

Resilient and Low-Latency Networks for Situation Awareness in the Factory of the Future

Project Overview

Motivation: Factory of the Future (FoF)

- FoF is inherently a multi-agent system composed of heterogeneous nodes: machines, workers, workpieces, etc.
- Coordination (communication and control) among heterogeneous nodes facilitates operational resiliency: adaptability, autonomy, and reliability
- Dense and dynamically-changing factory environments create harsh conditions for communication and control of networked systems

Technical Gaps:

- Existing works on localization do not account for sensing latency and may lead to poor performance when data packets are not readily available
- A systematic design of localization and decision-making accounting for the latency in sensing, communication, and computation is still lacking

Research Objective:

Develop latency-resilient algorithms for network inference and control to facilitate situational awareness and decision-making in FoF

FoF: Inference and Control Loop

- FoF has the following constituents:
 - Physical layer: FoF agents
 - Sensing layer: multimodal sensors
 - Inference layer: processor nodes for localization and navigation
- Control layer: processor nodes for action generations

Physical, sensing, inference, and control layers for FOF

Contributions: Our contributions to NextG resiliency, network intelligence, performance, and security are as follows:

- Operational resilience under latency
- High-accuracy localization and near-optimal control action generation
- Intelligent network resource coordination

Moe Z. Win (PI), Dimitri P. Bertsekas, and Victor B. Lawrence Massachusetts Institute of Technology and Stevens Institute of Technology

Adaptive Low-Latency Network Localization

Introduction:

- Localization and tracking is important for FoF
- Multiple nodes infer the system state via sensing and inter-node communication

Goals:

- Design efficient algorithms for high-accuracy localization by fusing sensed data obtained from heterogeneous devices in FoF
- Develop a framework for inference in the presence of network latency

Challenges:

- Heterogeneity of sensors used in FoF
- Communication and computing latency in the network
- Uncertainty in temporal association of sensed data with measurement time

Approaches:

- Soft Information (SI)
- Extraction methods of soft feature information and soft context information
- inference theory

Localization based on soft information

Belief Propagation

- positions
- measured

Latency-Resilient Decision Making

Introduction:

- is crucial for NextG networks
- sensing resources for inferring and controlling the states of FoF agents

Goals:

ERICSSON

- factory
- Develop efficient coordination strategies for sensing and communication

- Fusion of soft information from heterogenous observations using statistical

- Iterative evaluation of an approximate posterior distribution for the target - Tractable association of sensing data with the time instants at which they are

• Resilient decision-making and the ability to adapt and coordinate agent resources

• FoF requires the network to efficiently use its limited energy, communication, and

• Design system-wide control policies for partially observable target nodes in the

Challenges:

Approaches:

Rollout

Network localization and navigation for beyond 5G networks:

- urban microcell (Umi)
- indoor open office (IOO)

• Performance of the decision layer is limited by the inference layer • Partial observability of target states is complicated by network-wide latency Multi-agent decision problems are difficult to solve

Partially observable Markov decision processes (POMDPs)

 Formulate the decision-making problem as a POMDP - Compute belief state using proposed latency-resilient localization algorithms Employ dynamic programming for obtaining near-optimal policies

Representation of a POMDP

 Approximate the reward-to-go using a heuristic policy - Obtain a sequence of controls for the lookahead horizon using nonlinear programming or optimal control techniques

Preliminary Works

Numerical results are obtained for ETSI 3GPP standardized scenarios

 Channel instantiations are generated accounting for spatially correlated fading • SI-based approaches are compared with those in the 3GPP technical report (TR)