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Abstract— In mission-critical verticals such as automated
driving, 5G-advanced networks must provide centimeter-level
dynamic positioning along with ultra-reliable low-latency com-
munication services. Massive Multiple-Input Multiple-Output
(mMIMO) and millimeter waves (mmWave) are the key enablers,
allowing high accuracy angle and delay estimation. Still, extract-
ing such information from highly-dimensional Channel Impulse
Responses (CIRs) results in a complex task, due to channel spar-
sity and intermittent blockage. In this paper we focus on non-line-
of-sight (NLOS) identification from CIR data, proposing a Deep
Autoencoding Kernel Density Model (DAKDM) to characterize
the statistics of the channel latent features. We formulate the
problem as a semi-supervised anomaly detection task in which
only LOS samples, i.e., normal data, are adopted for training.
DAKDM is a single-stage training model that takes as input the
full CIR thanks to an AutoEncoder (AE) structure. The proposed
method is able to learn the latent distribution by means of a
Kernel Density Estimator (KDE) in combination with a deep
learning likelihood network. We validate the proposed solution in
a 5G Urban micro (UMi) vehicular scenario. Results show that
the proposed model can significantly outperform conventional
algorithms and obtain similar performances to variational Bayes
algorithms at one tenth of the inference time.

Index Terms— Deep autoencoding kernel density model,
anomaly detection, CIR, 5G, deep learning, NLOS identification.

I. INTRODUCTION

THE newest release of the 5th generation (5G) of cel-
lular communication systems, namely the 3rd genera-

tion partnership project (3GPP) Release 16, also known as
new radio (NR), introduces for the first time high-precision
positioning functionalities into cellular networks. location ser-
vices (LCS) are extended from regulatory services to roam-
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ing and commercial capabilities [1], [2], [3], [4]. Higher
frequencies, bandwidth improvements and massive-multiple-
input multiple-output (MIMO) technologies are the key fea-
ture enablers for radio access technology (RAT)-dependent
dynamic positioning [2], [3], [4], [5] and location awareness
of connected nodes [6], [7], [8], [9], [10], [11]. The major
fields of application can be found in target tracking [12],
[13], [14], internet-of-things (IoT) [15], [16], [17], crowd
sensing [18], [19], smart environments [20] and industrial
automation [21]. Strict requirements are foreseen for the most
critical services such as automated driving [22], [23]. These
include a lateral and longitudinal positioning error of 10 and
50 cm [24], respectively, and a latency down to 5 ms for
fully autonomous driving vehicles [25]. Next 5G releases,
also known as 5G-Advanced and beyond, will have to meet
such challenging localization requirements while coping with
complex propagation conditions, due to the extreme path-loss
and frequent blockage conditions experienced by millimeter
waves (mmWave).

These problems have been widely studied in the field of
localization and navigation focusing on fundamental perfor-
mance limits [26], [27], [28], [29], [30], [31], algorithm
design [32], [33], [34], [35], [36], [37], [38], network opera-
tion [39], [40], [41], [42], and network experimentation [43],
[44], [45], [46], [47], [48]. It is clear that legacy solutions
for positioning, based on conventional approaches for multi-
lateration/angulation, will struggle to deal with rapidly fading
channels and intermittent blockage. Geometrical approaches
rely in fact on line-of-sight (LOS) condition for estimating
directions and ranges of the positioning reference signals.
Real-time detection and prediction of non-LOS (NLOS) links
is mandatory to mitigate the false localization due to biased
range/angle estimates. Since the environment significantly
impacts on the propagation, data-driven techniques have so far
produced very encouraging outcomes in NLOS detection [48],
[49]. Therefore, machine learning (ML) is expected to play a
crucial role in future generation networks [50], [51] and stan-
dard compliant solutions are foreseen already from Release
17-18 [52].

Solutions for blockage detection should exploit the whole
power-delay-angle profile of the channel impulse response
(CIR) as this embeds a wide range of geographical data and
propagation characteristics [53]. In 5G industrial use-cases,
e.g., automated driving, historical CIR data are largely avail-
able in roadside units that receive continuous information from
geolocalized vehicles [54], [55], [56], [57]. ML algorithms
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Fig. 1. Sparse channel representation in azimuth ϕ, elevation θ and delay τ
domain.

could easily exploit these data for automatic NLOS detection.
However, since such signals are highly dependent on the
environment, ML approaches for detecting NLOS using CIRs
frequently fail to generalize to varied contexts [58]. Moreover,
massive MIMO and very high frequencies of advanced-5G
networks will produce high dimensional channel responses
which may be complex to handle. An example of channel
power-delay-angle-profile is shown in Fig. 1, for a 5G urban
scenario with carrier frequency 30 GHz, bandwidth 400 MHz
and uniform planar antenna array receiver of 64 elements. The
sparse power delay-angle profile of the channel is a signature
of the user location and should be exploited to infer the
visibility conditions of the base station.

In this paper, we propose an innovative strategy to char-
acterize the sparsity of the mmWave MIMO channel and
approximate whatever high-dimensional distribution in a fast
and compact way. To demonstrate the efficacy of the method,
we address the problem of NLOS identification, exclusively
employing LOS CIRs for training. This is done because LOS
CIRs are easier to extract in training procedures and present
more peculiar distributions, i.e., usually the direct path is the
dominant factor in a Rician fading channel. In addition, this
facilitates the deployment and results in higher generalization
compared to other systems that require both classes for training
(i.e., LOS and NLOS). Therefore, we treat the problem as an
anomaly detection case in which LOS samples are considered
as normal samples, while NLOS samples are anomalous.

II. RELATED WORKS

In this section, we first review the literature starting from
early works on ultra wide-band (UWB) systems (Sec. II-A)
and then we extend the analysis to ML-based algorithms
(Sec. II-B). Next, we review the state of the art on anomaly
detection focusing on neural network (NN) approaches
(Sec. II-C) and we discuss the original contributions provided
in the paper (Sec. II-D).

A. NLOS Identification

Existing techniques for NLOS identification/detection prob-
lem can be mainly divided into three major categories: based
on range estimates, based on position estimates and based on
channel statistics. The first group of methods, i.e., based
on range estimates, measures the running variance of the
ranges and applies a threshold using pre-computed variance
statistics [59]. The techniques based on position estimates are
mainly map-based, i.e., they observe the user equipment (UE)
position in relation to the geometry of the environment [60],
[61]. These first two categories are either too oversimplified
or require perfect knowledge of the UE’s position and of the
map geometry.

The third class relies on channel statistics, such as ampli-
tude, mean and root-mean-square delay. In case these statistics
are known at-priori, a joint-likelihood ratio test can be adopted
for hypothesis selection [62], [63] or as soft information in
weighted least squares (WLS) algorithms. The limitations of
this last class of existing techniques include experiencing
delays while gathering channel statistics to create a database
and determining the complex combined probability distribu-
tions of necessary features for statistical methods. ML-based
approaches overcome these drawbacks by avoiding statistical
modeling of the input features.

B. ML for NLOS Identification

ML approaches to NLOS identification can be divided into:
supervised, unsupervised and semi-supervised learning. First
works (i.e., supervised learning) use hand-crafted channel
state information (CSI) features such as energy, maximum
rise time, kurtosis, root-mean-square-delay spread, maximum
amplitude, time of flight (ToF), Ricean-K-factor and mean
excess delay [48], [64], [65], [66]. These deterministic features
have a solid theoretical basis and capture the differences
between LOS and NLOS conditions in terms of power and
delay attributes, as well as the strength of the dominant signal
component relative to the multipath components. The most
popular adopted ML models are support vector machines
(SVMs), relevance vector machines (RVMs), random forests
(RFs) and Gaussian processes (GP). These methods can also
be used to directly mitigate the range bias by applying a
regression problem to the ranging-error estimates [49], [67].

Despite achieving good results, these methods highly
depend on the pre-selected features which limit their potential.
On the other hand, deep learning (DL) approaches can directly
learn the most suitable combination of features (typically non-
linear) using as input the full CIR and producing as output the
desired classification. First works in this direction can be found
in [68], [69], [70] using convolutional neural networks (CNN)
to perform feature extractions in grid-like data where local
patterns and structures are critical. Some recent studies [71],
[72] directly exploit the automatic feature extraction of the
CNN in order to locate a target by performing a fingerprint
training. A main limit is the need of extensive measurement
campaigns and time-consuming labeling of data. Moreover,
supervised learning approaches require updating the training
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database when conditions are changed and need representative
samples of all the possible NLOS anomalies.

A solution could be permitting not to have labels at all and
manage the problem as an unsupervised one. Authors in [73]
fit a Gaussian mixture model (GMM) with two components
(one for LOS and one for NLOS) using some key hand-
crafted features of the channel and output the classification
according to the magnitude of the membership weights. While
unsupervised techniques are very promising, unfortunately
they do not achieve very high performances, due to lack of
knowledge or lack of structured data.

The third class of semi-supervised approaches has the
advantage of not needing examples of all the possible anoma-
lies as supervised learning. Moreover, powerful DL semi-
supervised methods focus on learning one single distribution
which, in many cases, is easier than a separating boundary
between two distributions [74]. Works that adopt this strategy
can be found in [58], [75] which adopt the Pearson correlation
coefficient and one-class SVM to perform NLOS classifica-
tion, respectively. A very recent work [76] employs variational
autoencoder (VAE) to perform feature extraction and imposes
a Gaussian distribution to the latent features in order to ease
learning of distribution of normal samples. The score adopted
to define the probability of NLOS is then used to estimate
the bias and variance of time-based measurements. Although
the idea of using an autoencoder (AE) to have a compact
representation of the channel can give very good results, the
usage of sampling-based methods to perform the prediction
has the main drawback of not being suitable for real-time
applications.

C. Neural Networks for Anomaly Detection

Anomaly detection is frequently employed in problems
where we have a large amount of data from normal circum-
stances but little data from abnormal ones. Here, on the other
hand, we consider the setting of semi-supervised learning in
which normal training data only are provided. In this case,
the problem turns out to be locating those samples that do
not conform to the normal ones or a model explaining normal
ones. Thus, the objective is to learn in a finer way as possible
the distribution related to the normal samples.

To this aim, many works focus on end-to-end models to
directly produce the classification using one-class neural net-
works (OC-NN) [77]. On the other hand, generative models are
increasing in popularity with generative adversarial network
(GAN) and VAE [78]. However, GANs are problematic to
control in the training phase [79] and VAEs have the downside
of requiring sampling, which is unfeasible under certain use
cases, and furthermore experiments have shown that they tend
to perform worse than AE [80], [81].

Reconstruction methods, as AE, are the most widely used
DL techniques for anomaly detection in images [82]. Usually,
they are used in combination with density-based methods,
as kernel density estimation (KDE) [83], for score estimation
by first performing dimensionality reduction, and then apply-
ing density estimation to the latent low-dimensional space.
However, these two-steps methods restrict the modification to
the dimensionality reduction since fine-tuning is difficult in

well-trained AE. To solve this problem, authors in [84] propose
a deep autoencoding Gaussian mixture model (DAGMM) to
mutually learn the latent feature representations and their
density under the GMM framework by mixture membership
estimation. Even though their approach is direct and does not
require two step-training, GMM may not be able to fully
represent the latent distribution of normal samples and are
subject to singularity problems. On the other hand, KDE are
perfect to represent complex distributions, but they are very
slow in evaluation and require storing the whole dataset for
inference.

D. Contributions

In this paper, we address the problem of NLOS identifi-
cation in 5G-advanced cellular systems using an innovative
approach that allows to overcome the aforementioned limita-
tions. The main contributions are the following:
• We propose a feature extraction method that exploits the

angle-delay channel power matrix (ADCPM) as input
data and allows to characterize the distributions of the
latent features of the sparse space-time channel in mas-
sive MIMO cellular systems using orthogonal frequency
division multiplexing (OFDM).

• We design NLOS identification as a semi-supervised
anomaly-detection problem by exploiting a deep autoen-
coding kernel density model (DAKDM). The DL model
allows to identify the few key parameters that describe
the sparse space-time channel response and to learn
the distributions of such latent features from training
data. The proposed approach is able to jointly learn the
sparse channel representation and approximate the KDE
likelihood in a single training stage without storing the
dataset.

• We simulate a realistic 5G-advanced MIMO-OFDM
vehicular scenario, according to the standard specifica-
tions [85], using a Matlab ray-tracing software [86]. The
scenario is composed of multiple vehicular UEs created
with simulation of urban mobility (SUMO) software [87].

The paper is organized as follows: Sec. III introduces the
channel model for a multi-user MIMO-OFDM system and
its extracted fingerprinting. Sec. IV provides the context of
anomaly detection applied to the NLOS identification and
defines the proposed DAKDM solution. Sec. V is devoted to
the description of the simulated 5G scenario and to the com-
parison with state-of-the-art anomaly detection DL methods.
Finally, Sec. VI draws the conclusion.

E. Notation

Random variables are displayed in sans serif, upright fonts;
their realizations in serif, italic fonts. Vectors and matri-
ces are denoted by bold lowercase and uppercase letters,
respectively. For example, a random variable and its real-
ization are denoted by x and x; a random vector and its
realization are denoted by x and x; a random matrix and its
realization are denoted by X and X , respectively. Random
sets and their realizations are denoted by up-right sans serif
and calligraphic font, respectively. For example, a random
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Fig. 2. Uniform planar array with M and N antennas in x and z directions,
respectively. The direction of arrival (DoA) is highlighted and decomposed
into azimuth 0 ≤ φk,p < π and elevation 0 ≤ θk,p < π.

set and its realization are denoted by X and X , respectively.
The function px(x), and simply p(x) when there is no ambi-
guity, denotes the probability density function (PDF) of x.
j =

√
−1 denotes the imaginary unit. The notation XT, X∗

and XH indicate the matrix transposition, conjugation and
conjugate transposition. The Kronecker and the Hadamard
product between two matrices are denoted with the symbols
⊗ and ⊙, respectively. With the notation x ∼ CN (µ, σ2) we
indicate a complex Gaussian random variable x with mean µ
and standard deviation σ. We use E{·} and V{·} to denote the
expectation and the variance of random variable, respectively.
R and C stand for the set of real and complex numbers,
respectively. Re(x) and Im(x) are the real and complex part of
the complex number x, respectively. ⌊x⌋ indicates the largest
integer not greater than x, while δ(·) and δ[·] are the Dirac
delta and Kronecker functions, respectively.

III. SYSTEM MODEL

A. Channel Model

We consider a multi-user mmWave MIMO-OFDM system
in which K UEs transmit in uplink direction over a bandwidth
B at carrier wavelength λc. The base station (BS)’s cell panel
is equipped with an uniform planar array (UPA) with N ×M
isotropic antennas. The antenna spacings are dh and dv, over
the horizontal and vertical dimension, respectively. We assume
that the UE transmits using only one logical port and a number
of physical antennas unknown at the BS. Between the UE
k = 1, . . . ,K and the BS, we consider a multipath channel
with Nk paths with ToF τk,p for path p = 1, . . . , Nk. The
DoAs from the k-th UE and of the p-th path are divided into
azimuth 0 ≤ φk,p < π and elevation 0 ≤ θk,p < π. A picture
of the panel array can be found in Fig. 2. We restrict the
azimuth up to π since we consider an UPA antenna. For tri-
sectorial BSs the angular coverage is reduced to 2π/3.

The OFDM modulation is performed over Nc sub-carriers,
sampling interval Ts and symbol duration Tc = NcTs. Con-
sidering a baseband representation of the signal, we define the
frequency at the ℓ-th sub-carrier as fℓ = ℓ

Tc
, ℓ = 0, . . . , Nc−1.

The cyclic-prefix duration is Tg = NgTs and it is assumed

to be larger than the maximum channel delay for all UEs
τMAX = max

k,p
τk,p. Consequently, we define with rk,p = ⌊ τk,p

Ts
⌋

the temporally resolvable propagation delay of the p-th path
with respect to the k-th UE. Thus, the baseband CIR of user
k is modelled as [88]:

hk(τ) =
Nk∑
p=1

ak,p βk,p e(θk,p,φk,p)e−j2π
dk,p
λc δ(τ − τk,p), (1)

where the p-th path is characterized by a complex path gain

αk,p = ak,pe
−j2π

dk,p
λc βk,p with βk,p = ej2πνk,pt due to the

Doppler frequency shift, a traveled distance dk,p = cτk,p,
a pulse waveform approximated with a Dirac delta function
δ(τ − τk,p) and an array response vector e(θk,p,φk,p) ∈
CMN . For p > 1, the p-th path is αk,p = ak,pe

jψk,p ,
with ψk,p = 2πνk,pt− 2π dk,p

λc
and αk,p ∼ CN (0, σ2

k,p). The
first path p = 0 is αk,0 ∼ CN (s0ak,0ejψk,0 , σ2

k,0) where
it is s0 = 1 for LOS (i.e., with a deterministic direct
path contribution and Rician fading) and s0 = 0 for NLOS
(i.e., Rayleigh fading). Additionally, we consider the Doppler-
related rotation to be almost constant over time interval τMAX

and that the complex amplitudes αk,p associated to different
paths as uncorrelated, according to the wide-sense stationary
uncorrelated scattering model. At the BS, the array response
vector can be decomposed into [89]:

e(θk,p,φk,p) = ev(θk,p)⊗ eh(θk,p,φk,p), (2)

where the M × 1 response vector to the elevation angle is:

ev(θk,p) =
[
e−j2π(m−1) dv

λc
cos(θk,p)

]M
m=1

(3)

and the N × 1 response vector to the azimuth angle is:

eh(θk,p,φk,p) =
[
e−j2π(n−1)

dh
λc

sin(θk,p)cos(φk,p)
]N
n=1

. (4)

Adopting an OFDM modulation with sampling at t = nTs,
the channel frequency response (CFR) at the ℓ-th sub-carrier
can be written as the discrete Fourier transform (DFT) of the
CIR of the different paths [90], [91]:

Hk,ℓ ≈
Ng−1∑
n=0

Nk∑
p=1

αk,p e(θk,p,φk,p) δ[n− rk,p] e−j2πτk,pfℓ

=
Nk∑
p=1

αk,p e(θk,p,φk,p) e−j2π
ℓrk,p
Nc , (5)

where the approximation holds for ToFs multiple of the
sampling interval Ts or equivalently for Ng →∞. Finally,
the space-frequency channel response matrix (SFCRM) Hk ∈
CMN×Nc of the k-th UE is obtained as:

Hk = [Hk,0 Hk,1 . . . Hk,Nc−1], (6)

which will be used in the next section to extract the channel
fingerprints.
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B. Channel Fingerprints

To detect the propagation conditions that generated the
response (5), classifying them in LOS or NLOS, we propose
to analyze the CFR in the angle-delay domain, which eases
the recognition of the clustered multipath components associ-
ated to the direct (LOS) or secondary (NLOS) macro-paths.
We thereby convert the SFCRM (6) into the domain of the
angle of arrival (AoA) and the ToF, by introducing the angle-
delay channel response matrix (ADCRM). We define with
VM ∈ CM×M and VN ∈ CN×N the phase-shifted DFT matri-

ces [92] where [VM ]u,v = 1√
M
e−j2π

u(v−M
2 )

M and [VN ]u,v =

1√
N
e−j2π

u(v−N
2 )

N . Then, we denote by F ∈ CNc×Ng the
matrix formed by the first Ng columns of Nc dimensional
unitary DFT matrix where [F ]u,v = 1√

Nc
e−j2π

uv
Nc . ADCRM

is computed as [93]:

Gk =
1√

MNNc

(V H
M ⊗ V H

N )HkF
∗ ∈ CMN×Ng , (7)

where (V H
M ⊗V H

N ) and F ∗ project the SFCRM into the angle
and delay domain, respectively.

For NLOS identification, we propose to use the ADCRM
to compute the average power of the channel components that
are collected into the ADCPM defined as:

Pk = E{Gk ⊙ G∗k} ∈ CMN×Ng , (8)

where [Pk]i,r = E
{
|[Gk]i,r|2

}
. We recall here that the

ADCPM holds some important asymptotic properties, as for
N , M and Ng → ∞, it tends to be a sparse matrix with
elements [Pk]i,r matching the i-th AoA and the r-th ToF [93]:

lim
M,N,Ng→∞

[Pk]i,r =
Nk∑
p=1

σ2
k,pδ[i−mk,pN − nk,p]δ[r − rk,p],

(9)

where mk,pN + nk,p denotes the index of the i-th AoA and
rk,p the index of the r-th ToF. Note that the angle and delay
indexes mk,pN + nk,p and rk,p, are two distinct and discrete
quantities which relates to the physical AoA and ToF in the
following way. The ToF can be approximated as τk,p = rk,pTs,
while the azimuth φk,p and elevation θk,p can be written as
φk,p = arccos (mk,p−M

2
M

λc
dh

) and θk,p = arccos (nk,p−N
2

N
λc
dv

),
respectively. Consequently, working in the transformed angle-
delay domain allows the DL model to learn the location-
dependent features and, therefore, the statistics of LOS data
to be used for blockage prediction.

Regarding the complexity overhead due to the ADCPM
computation, we observe that Pk is obtained from the chan-
nel matrix Hk which is always estimated for communica-
tions purposes. Therefore the only overhead is the compu-
tation of (7), which can be efficiently performed using the
2D-Inverse Fast FT (IFFT), with an overall complexity of
O(MNNg · log(MNNg)).

IV. BLOCKAGE DETECTION METHODOLOGY

In this section, we first introduce the problem formulation
of the semi-supervised setting which serves for the proposed

Fig. 3. Example of a sparse ADCPM with M = N = 8 antennas at the
BS and Ng = 352 cyclic prefix duration in terms of sampling intervals Ts,
simulated in an urban road environment with ray-tracing software.

DL model’s foundation. Then, we describe the network input,
i.e., the ADCPM fingerprint, followed by the definition of the
DAKDM. Finally, we define the loss function used to train the
model.

A. Problem Formulation

We consider a semi-supervised setting in which we are
given a training dataset S train comprising only normal data,
i.e., Xi sampled from pX, and a smaller testing data S test

comprising normal (label yi = 0) and anomalous data (label
yi = 1). Here, we refer to LOS samples as normal, while
we consider NLOS samples as anomalous. Nevertheless, the
choice of normal/anomalous condition is arbitrary and could
be customized to the specific scenario, as the proposed model
would still be valid in both cases, i.e., LOS or NLOS samples
as normal data. Usually, the high-dimensional distribution
of normal samples pX is complex and unknown. Thus, the
objective is to first elaborate S train such that we can learn
its manifold distribution and, subsequently, during inference
time, identify the anomalous samples in S test as outliers. The
mapping of the high-dimensional data is carried out using a
DL model f(·) that learns the normal data distribution while
also attempting to reduce an anomaly score A(Xi) given as
output. The higher the anomaly score of A(Xi) for a test
sample Xi, the higher probability that Xi is anomalous. For
evaluation, a threshold (η) criterion is applied, i.e., A(Xi) > η
denotes an anomaly, based on a predefined false positive rate
(FPR).

B. DL Input

We employ (9) as input to the neural network for NLOS
identification, as this matrix represents the clustered multipath
structure of the channel and embeds the information on
LOS/NLOS propagation conditions that we are interested to
extract. Moreover, the sparsity of the matrix helps the CNN
in features extraction since the first layers of CNN are usually
sparse and they gather the more discriminant features [94].
In Fig. 3 we can see the ADCPM Pk composed by MN angle
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Fig. 4. Structure of the proposed deep autoencoding kernel density model
(DAKDM) composed by an autoencoder (AE), a kernel density estimation
(KDE) and a likelihood network.

directions and Ng delay samples. The sparsity of the matrix
is well-visible even without a huge number of antennas or
sample’s resolution. From now on, for simplicity of notation,
we drop the index k related to user k and we denote the i-th
input sample as Xi = Pi.

C. Deep Autoencoding Kernel Density Model

The proposed DAKDM system for NLOS identification
involves three main elements: an AE, a KDE model and a
likelihood network. The model can be seen in Fig. 4. The
AE comprises an encoder E(·), that elaborates the i-th input
Xi ∈ RMN×Ng into a latent representation zi ∈ Rm, and
a decoder D(·), that carries out an inverse transformation to
return to the original high-dimensional distribution, obtaining
X̂i. The latent distribution pz may have any form, i.e., it is not
constrained to belong to any specific PDF family. This makes
the proposed approach general enough to be applied to any
channel environment.

The distribution pz is automatically learned by the KDE
block of the system (see Fig. 4). The KDE is a non-parametric
method to estimate any distribution directly from a set of
samples drawn from it. Given a set of samples {zj}Ns

j=1 from
pz, we define the KDE K(·) applied to sample zi as [95]:

K(zi|{zj}Ns
j=1) =

1
Ns

Ns∑
j=1

kh(zi − zj), (10)

where kh : Rm → R is a kernel function with bandwidth h
which regulates the balance between the estimator’s variance
and bias. The kernel employed in this paper is the widely
known Gaussian kernel:

kh(x) = e−
|x|2

2h2 . (11)

The output of a KDE, trained only with normal latent samples
{zj}Ns

j=1, can be seen as the likelihood of the test sample to
belong to the normal distribution. Thus, the derived anomaly
score can be obtained as AK(zi) = −log(K(zi|{zj}Ns

j=1)).
However, the downsides of KDE lie in the fact that it requires

Algorithm 1 Mini-Batch Training Procedure
1: procedure TRAINING(batch size Ns) ▷ Batch number j
2: for i = 1, 2, . . . , Ns do
3: Encode incoming signal Xi: zi = E(Xi).
4: Compute anomaly score: AL(zi) = −log(L(zi)).
5: Compute KDE prediction:

AK(zi) = −log(K(zji |{z
j−1
l }Ns

l=1)).
6: end for
7: Compute loss function Ljtot.
8: Perform backward-pass.
9: end procedure

storing all the training dataset to estimate the density function
at inference time.

The idea to solve this issue is to first reduce the number
of samples Ns used to estimate the distribution, and then
approximate the output of the KDE with a NN that is much
faster in the prediction. We call the NN to estimate the output
of the KDE as likelihood network and denote it with L(·).
The logical steps for the training procedure with a batch of
Ns samples are described in Algorithm 1. First, we encode the
input with the encoder. Then, we extract the anomaly score
as A(Xi) ≜ AL(zi) = −log(L(zi)) and we compute the
KDE prediction AK(zi). Finally, we compute the loss function
which is described in Sec. IV-D and perform the backward
pass. The key aspect here is that the KDE output is computed
using the previous mini-batch, i.e., K(zji |{z

j−1
l }Ns

l=1). This
permits to avoid storing all the training dataset to estimate the
density function. The underlying assumption is that the batch
size Ns is able to give a good representation of the likelihood
through the KDE. Formally:

KL
(
K

(
zi|{zj}Ns

j=1

) ∥∥ p(zi)) ⋍ 0, (12)

where KL(·∥·) is the Kullback-Leibler divergence. On the
contrary, at inference time, we just check if the anomaly score
AL(zi) > η. This implies that, during deployment, we can
completely discard both the decoder D(·) and the KDE K(·),
just relying on the faster prediction of the encoder E(·) and
likelihood network L(·).

D. Loss Function

The objective of the loss function is to first induce the
DAKDM to learn the latent representation of normal data
and then to approximate AK(zi) with AL(zi). To this aim,
we consider the training dataset S train = {Bj}Nb

j=1, where
Nb is the number of batches in the training dataset and
Bj = {Xj

i }
Ns
i=1 is the j-th mini-batch with Ns samples.

We define the total loss related to mini-batch j as follows:

Ljtot =
1
Ns

Ns∑
i=1

Lrec(X
j
i , X̂

j
i )

+
wKL

Ns

Ns∑
i=1

KLpoint

(
L(zji )

∥∥K (
zji |{z

j−1
l }Ns

l=1

))
+
wlik

Ns

Ns∑
i=1

(
−logK

(
zji |{z

j−1
l }Ns

l=1

))
, (13)
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where Lrec(X
j
i , X̂

j
i ) = ∥Xj

i − X̂j
i ∥2 is the loss function

that describes the reconstruction error given by the AE, wKL
and wlik are the weighting parameters that control how much
the single losses affect the objective function as a whole and
KLpoint is the pointwise KL-divergence defined as:

KLpoint(x∥y) = x log
(
x

y

)
. (14)

With the second right-hand side of (13), we exploit the power
of the likelihood network to learn the KDE output trained
with the previous mini-batch. The choice of the loss function
is motivated by the fact that, if assumption (12) holds, then
we can write the contribution of zi to the anomaly score with
the following [96]:

− log p(zi) ≲ −logK
(
zi|{zj}Ns

j=1

)
+ KL

(
L(p(zi)|zi)

∥∥ p(
K

(
zi|{zj}Ns

j=1

)
|zi

))
,

(15)

where L(p(zi)|zi) is the likelihood network that provides the
probability of zi given zi. For the proof of (15), please refer
to Appendix A. We directly insert the first right-hand side of
(15) in the loss function to induce the AE to decrease the
anomaly score, thus increasing the likelihood. On the other
hand, we do not have a KDE that provides the probability of
its predictions, therefore we consider the p(K(zi|{zj}Ns

j=1)|zi)
as a single deterministic value that we approximate through
the likelihood network.

V. SIMULATION EXPERIMENTS

A. 5G NR Network Simulation

To evaluate the proposed DAKDM method for NLOS
identification, we simulate realistic CSI data based on the 5G
NR clustered delay line (CDL) channel model [97] which is
characterized by a maximum bandwidth of 2 GHz over the
whole frequency range of 0.5 GHz to 100 GHz. We simulate
the wave propagation using a ray-tracing method [98], [99],
[100] provided by Antenna Toolbox Matlab package where the
propagation pathways from the UE to the BSs are computed
based on the surface geometry from a map file. Ray-tracing
uses the shooting and bouncing ray (SBR) method [101],
accounting for up to 10 path reflections. The method does
not take into account buildings’ windows and possible foliage,
which would require a high-definition 3D mapping of the
environment or a complex simulation with artificially created
maps. The channel model is then produced by coupling all
the paths taking into account the small-scale fading due
to the UE’s movement, angle spread and cluster properties.
This permits to achieve spatial consistency, meaning that two
adjacent positions present similar channel characteristics due
to comparable scattered environments.

B. Urban Mobility Scenario

For the experiments, we simulate a 3GPP urban micro
(UMi) scenario in an area of 1000 m × 1000 m, near the
Leonardo Campus of Politecnico di Milano, with specific
parameters described in [85]. As shown in Fig. 5, the scenario
comprises 19 urban sites, placed in an hexagonal layout with

Inter-Site Distance (ISD) of 200 m, each equipped with 3 cells.
The BS antennas are characterized by an UPA configuration
with M = N = 8 elements and a downtilt of 15◦. The
transmission power is 44 dBm and each antenna element was
defined using the specifications in [102], providing a front-to-
back ratio of about 30 dB and a maximum gain of 8 dBi.

The vehicular UEs move in the area traveling along different
trajectories generated with SUMO software which replicates
actual traffic patterns on a particular route network. We gen-
erate up to 50 trajectories sampled every second, for a total
simulation time of 170 s. Each UE is equipped with an omni-
directional antenna and transmits the 5G standard compliant
sounding reference signals (SRSs) to all the BSs in the area
using a carrier frequency fc = 30 GHz and a transmission
bandwidth B = 400 MHz. The BSs, which can be in either
LOS or NLOS condition due to occlusions and reflections,
demodulate the OFDM signal and estimate the channel using
a least squares (LS) estimator. Subsequently, they obtain the
channel fingerprint using the estimated channel response to
compute the angle-delay channel structure (7) and then the
associated power structure (8).

For the experiments, we do not consider the multi-user
interference (MUI), but it is worth mentioning few consid-
erations for possible real implementations of the method.
In practice, the BSs can adopt various techniques to manage
the inaccuracy of channel estimation due to factors such as
the MUI. One common technique is to use channel estimation
algorithms that are robust to MUI, such as linear minimum
mean-square error (LMMSE) [103] which obtains sub-optimal
performance (sub-optimal as it does not use the knowledge of
the full CSI) with moderate computational complexity. Addi-
tionally, other techniques may rely on non-linear pre-coding
schemes which have been found to provide near-optimal per-
formance [104], [105]. In the standard of 5G-NR, codebook-
based MIMO precoding techniques have been proposed and
they are described in the 3GPP technical specifications (TS)
38-214 [106] and 38-211 [107]. With latest releases, i.e., Rel
16 and 17, MU-MIMO codebook (type II) has been improved
with the reduction of the feedback overhead. By implementing
these techniques, the MUI is highly reduced and the residual
interference resembles to background noise. Moreover, in case
the model has been trained in a channel in presence of non-null
interference, we would have an even-broader LOS distribution
characterization, which would be beneficial in case of single-
user transmission.

C. CSI Dataset

In the offline phase, each BS is assured to gather LOS
only realizations of the channel, composing a training dataset
for the blockage detection. In the online phase, on the other
hand, we create the test dataset adopting unobserved positions
of the UEs and collecting a balanced number of samples
between LOS and NLOS conditions. We saved more than
7.5 · 104 and 8.6 · 104 samples in the training and testing
set, respectively. Before the training, all the samples are
standardized (i.e., transformed such that the mean intensity
is 0 with standard deviation of 1) and shuffled at each
epoch.



1662 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. 6, JUNE 2023

Fig. 5. UMi scenario composed of 19 sites in the area of Politecnico di Milano, Leonardo campus, Italy. The signal-to-interference-plus-noise ratio (SINR)
is shown in downlink as a function of the UE position when BSs use trisectorial cells with broadside transmission.

MATLAB 2022a is used to create the channel fingerprints of
the data points, while the DL model for training and testing is
implemented using Pytorch [108] (v1.12 with Python 3.7.11).
We run our simulations on a workstation with an Intel(R)
Xeon(R) Silver 4210R CPU @ 2.40 GHz, 96 GB of RAM and
a Quadro RTX 6000 24 GB GPU. The testing times, described
in Sec. V-F1, only apply to the run time on Pytorch 1.12.
Unless otherwise specified, we train the model for a number
of epochs E = 30 with a batch size Ns = 64. wKL and wlik are
both empirically set to 0.1. We adopted the Adam [109] with
an initial learning rate lr = 10−4, and momentum β1 = 0.9,
β2 = 0.999.

D. DL Model Characteristics
For the AE part, we adopt the Segnet architecture [110]

with one single channel encoder and decoder. The upsampling
layers employ the encoder pool indices to create a sparse
feature mapping which is ideal for reproducing the sparse
ADCPM input. The AE is the most complex part of the model,
however, at testing time, we use only the encoder part, thus
halving the inference time if compared with VAE models or
in general solutions that adopt the reconstruction error as a
monitoring feature.

On the other hand, we develop the likelihood network using
a simpler multi-layer perceptron (MLP) which is able to learn
whatever non-linear function. The network can be found in
Table I. To cope with the overfitting we adopt the dropout
technique [111] after each activation function. Furthermore,
we insert a single batch normalization layer [112] right before
the ReLU function. This is done to avoid that the output of the
network will converge to a unique value after a long training.

E. Baselines
To evaluate the performances of the proposed model,

we compare it against a number of DL approaches proposed
in the literature to solve anomaly detection problems:

TABLE I
LIKELIHOOD NETWORK LAYER COMPOSITION

• DAGMM [84]. Single-stage training model composed by
an AE and a GMM used for learning the latent feature
distribution. The membership weights, which represent
the probability that a given data point belongs to each
component, are usually computed with the expectation
(E)-step of the expectation-maximization (EM) algorithm
used for the GMM fitting. However, in this case, the
membership weights are produced by an estimation DL
network.

• AE-KDE [83]. Double-stage training model in which first
the AE is trained and then a KDE is used to learn the
distribution of latent features from all the training dataset.
The bandwidth and the kernel are the same of DAKDM.

• VAE [76]. Auto-encoding variational Bayes applied to
NLOS identification. Here, the sampling mechanism is
mandatory since we need to sample new latent variables
from the learned probability distribution, i.e., in this case
a Gaussian distribution. The anomaly score A(Xi) is
computed as A(Xi) = 1

Nm

∑Nm
j=1 Lrec(Xi, X̂

j
i ), where

Nm is the number of samples. As suggested by the
authors, we draw 10 samples from the latent space
representation to derive the anomaly score.
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• GANomaly [113]. Deep-generative model composed by
an AE, a second encoder and a discriminator. The model
minimizes simultaneously the reconstruction error, the
encoder loss given by the second encoder and the adver-
sarial loss yielded by the discriminator.

For a fair comparison, we give the same input to each model
and we adopt the unchanged architecture for the encoders and
decoders with respect to DAKDM. Therefore, we adopt the
same number of latent features for all architectures.

In addition to DL model baselines, we compare our method
with classical ML and statistical algorithms. In particular,
we implement:
• JLRT [63]. Joint-likelihood ratio test considering the

statistics of the kurtosis, mean excess delay and root-
mean-square delay spread. The PDFs of the statistics are
approximated as log-normal distributions and they are
considered independent of each other.

• RF [66]. Random forest model with 100 trees and,
as input features, the Rician K-factor, root-mean-square
delay spread, mean excess delay and dominant channel
tap.

• CORR [75]. Pearson correlation coefficient computed
using a reference set of LOS ADCPM sliced in the direc-
tion of arrival with higher received power. We gathered
100 LOS reference signals and we considered only the
samples comprising 10 points before and 100 points after
the first peak. The likelihood of a test input is obtained
by averaging the correlation coefficient with the reference
LOS signals.

• OC-SVM [58]. One-class support vector machine which
computes the smallest hyper-sphere containing normal,
i.e., LOS, samples. We use the score function as a
likelihood measure. As regards the feature selection,
we adopt both static channel characteristics as the max-
imum received power, kurtosis, skewness, rising time,
root-mean-square delay spread, Rician K-factor, angular
spread of arrival and both time-varying features [114] like
the angular variant of arrival.

Note that, while CORR and OC-SVM are semi-supervised
learning algorithms, JLRT and RF are supervised learning
methods since they require statistics/samples of both classes.
The models and algorithms are run independently by each BS,
after the UE uplink transmission. The training, if required,
is performed before the validation procedure at each BS using
the locally collected input samples.

F. Results

1) Inference Timings: In this assessment, we want to mea-
sure the time required by each DL model to predict the
output of a sample. This is of particular relevance in real-
time applications where the inference time must be as low
as possible. An example is the vehicular applications where
the end-to-end latency must be contained within 100 ms or
less [115]. In Fig. 6, we show the boxplot of the inference time
for each sample over the whole testing dataset. We notice that
the proposed DAKDM is able to predict the anomaly score in
half of the time with respect to DAGMM as it does not require

Fig. 6. Boxplot of the distribution of the inference time per sample [ms],
varying the adopted DL models.

the decoder part prediction. Moreover, GANomaly and AE-
KDE models require up to 4 ms for a single prediction. This
is because GANomaly holds a more complex model, while
AE-KDE has to pass through the whole training dataset for
a single prediction. Finally, VAE takes about ten times more
than DAKDM due to the sampling strategy.

2) Batch Size: This assessment has the goal of verifying
how the batch size Ns affects the performances of the proposed
DAKDM. Theoretically, Ns should be large enough to gener-
ate a good representation of the latent features’ distribution.
To verify this behaviour, in Fig. 7 we analyze the anomaly
score AL(zi) of normal (Fig. 7a) and anomalous (Fig. 7b)
samples in the testing dataset after 30 epochs for Ns =
{8, 16, 32, 64, 128}. To avoid singular issues due to possible
zeros values given as input to the logarithm, we shift the
likelihood distribution as AL(zi) = −log(L(zi)+1). The first
thing to notice is that the anomalous score of normal data is
lower than the abnormal data and this is because the likelihood
network outputs higher values for samples with normal dis-
tributions. Second, we observe that decreasing Ns for normal
data, will produce lower mean and variances distributions, thus
enhancing the NLOS identification capabilities. This is due to
the fact that with a large batch size, the model struggles to
learn the pointwise KL-divergence since in the loss function
we have the contributions of many points. On the contrary,
with lower batch sizes, the likelihood network learns exactly
which value assign to each latent representation. Reducing
Ns has the benefit of being suitable for simpler devices with
low computational capabilities, in exchange for higher training
times. As a trade-off between performances and training times,
we choose Ns = 16.

3) Hyper-Parameters Tuning: This experiment aims of tun-
ing the main hyper-parameters related to the density models,
i.e., the bandwidth h of the KDE for DAKDM and AE-KDE
and the number of GMM components, denoted with g, for
DAGMM. In Fig. 8, we report the area under the curve (AUC)
obtained in the testing set after 30 training epochs varying the
bandwidth h ∈ {0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3, 6, 12} (Fig. 8a)
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Fig. 7. Comparison of the anomaly score AL(zi) after 30 epochs between normal and anomalous data, for varying batch size Ns.

for DAKDM and the number of GMM components g ∈
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} (Fig. 8b) for DAGMM. Starting
from Fig. 8a, we notice that the higher AUC is reached by
h = 0.2 and that for not optimal values, the AUC can differ
significantly. This is somehow due to the range values of zi
and to the number of points that we have. Since, in practice,
we have few anomalous samples, for tuning the bandwidth
we can simply rely on maximizing the likelihood of normal
samples varying the bandwidth. Comparing the results with
Fig. 8b, we see that DAGMM is not able to achieve high peaks
of performances in average, i.e., above 90% of AUC. This
means that the latent distribution cannot be well approximated
with less than 10 Gaussian distributions. Clearly, increasing
g will improve the performance but at the cost of a higher
complexity of the DAGMM estimation network.

4) Performance Comparison: In this last assessment,
we compare the performances of the proposed DAKDM with
the models described in Sec. V-E. In Table II, we report
the average AUC after 10 runs and the F-score, Accuracy,
Precision and Recall using a threshold on the anomaly score
related to 20% of FPR. We notice that the performances of
the AE-KDE (highlighted in green) are superior with respect
to all the others. The reason behind this is that the AE-KDE
represents the perfect unfeasible upper-bound, i.e., it requires
storing the whole training dataset for inference and thus
it can perfectly reconstruct the latent features distribution.
On the other hand, the lower-bound is represented by the
statistical JLRT method (highlighted in red), which obtains
an AUC of 63%. This method assumes the independence
of few hand-crafted features, which may not hold in any
situation. The second non ML-based method CORR reaches
an AUC of 64%, meaning that the LOS reference signals
are not a good representation of the LOS distribution. The
OC-SVM, a classical ML method, achieves a slightly higher
AUC due to its capabilities of projecting the original features
in a higher hyper-space (kernel trick). However, its main
limitations lay in the features-choice which, for sparse and

high-dimensional spaces, constitutes a non-trivial task. More-
over, we can notice that the precision (94%) is much higher
with respect to the recall (60%). This means that OC-SVM
tends to classify all test samples as LOS, learning a rough,
i.e., too general, LOS distribution. Finally, among classical
ML methods, the RF achieves the highest performances by
reaching an AUC of 79%. However, we remark that this
method requires the knowledge of NLOS samples, thus it
holds an advantage with respect to semi-supervised learning
methods.

Focusing now on the DL models, numerical results show
that they highly outperform the classical ML and statisti-
cal algorithms. Indeed, while deterministic feature extraction
might be more suitable for low-dimensional or simple chan-
nels, using the raw ADCPM as input to the CNN structure
allows the DL models to utilize the full potential of auto-
matic feature extraction, which contributes to the superior
performance of the DL methods in comparison to classical
ML and statistical algorithms. However, this does not exclude
the possibility of incorporating deterministic features in future
work to further improve the performance of the proposed
model. Among the DL methods, DAKDM (highlighted in
bold) and VAE hold the highest AUCs if compared with
DAGMM and GANomaly. In particular, DAKDM and VAE
outperform DAGMM and GANomaly of 7% and 16%, respec-
tively. The reasons behind this are that GANomaly is a very
complex network that requires a non-negligible effort in hyper-
parameter tuning and optimization, with additional issues in
training stability [79]. On the other hand, DAGMM is not able
to accurately learn the LOS latent feature representation due
to its limited number of Gaussian components. Both DAKDM
and VAE achieves the highest performances, i.e., 95% and
96% of AUC, but with two different methods. While VAE
imposes a simple latent distribution, DAKDM automatically
learns the low-dimensional LOS distribution thanks to the
KDE in training phase. However, the main advantage of
DAKDM is that it does not require sampling procedures



TEDESCHINI et al.: ON THE LATENT SPACE OF mmWAVE MIMO CHANNELS FOR NLOS IDENTIFICATION 1665

Fig. 8. Comparison of the AUC reached after 30 epochs using (a) DAKDM and (b) DAGMM, for varying bandwidth h and number of GMM components
g, respectively. The mean value (red dot) is plotted together with the associated uncertainty (error bar) computed using the maximum and minimum values
of AUC as boundaries.

TABLE II
COMPARISON ON MEAN PERFORMANCE INDICATORS AFTER 10 DIFFER-

ENT RUNS BETWEEN THE PROPOSED DAKDM AND THE BASELINES

and necessitates only 10% of the inference time needed by
VAE (see Sec. V-F1). This makes it suitable for low-latency
and mission-critical applications such as V2X networks for
automated driving.

VI. CONCLUSION

This paper addressed the problem of high-dimensional chan-
nel distribution characterization for next generation cellular
networks. In order to demonstrate the method, we tackle
the problem of NLOS identification in a mm-wave MIMO
system with sparse space-time channel responses. We model
the problem within the semi-supervised anomaly detection
framework where LOS samples correspond to normal data
with peculiar characteristics and distributions. We propose a
deep autoencoding kernel density model (DAKDM) where
the manifold distribution of normal data is elaborated with
an AE that takes as input the sparse ADCPM which uni-
vocally map the position-dependent features of the chan-
nel. The AE is jointly learned together with a likelihood
network which is trained to learn the output of a KDE
that directly estimates the distribution of the latent features.

The DAKDM has the main advantage of learning what-
ever latent distribution without storing the whole training
dataset.

We validated the model in a 5G standard compliant UMi
scenario simulated with Matlab ray-tracing package, permit-
ting spatial channel consistency between adjacent positions.
The UEs are vehicles which move in the area according to
dynamics simulated by the SUMO software. Compared with
DL state-of-the-art models, results showed that the proposed
DAKDM is much more efficient, both in terms of inference
time and computational requirements. In particular, DAKDM
holds a prediction time per sample which is up to one fourth
and one tenth of GANomaly and VAE, respectively. This
makes it appropriate for edge devices with strong latency
requirements for mission-critical applications. From a per-
formance point-of-view, DAKDM is able to achieve simi-
lar performances of the top-performer VAE, outperforming
GMM-based method such as DAGMM of about 7%.

In the next years, ML and in particular DL methods are
expected to play a crucial role in next generation cellular
networks. Communication systems, but also localization tech-
niques, are required to increase performance capabilities and
types of services to accomplish increasingly high standards.
Thus, DL-based methods as the proposed DAKDM become
essential to push further the performances. A natural exten-
sion of our work would be to integrate NLOS mitigation
into the system in order to compensate the induced error
given by lack of visibility or directly integrate DL tech-
niques into positioning algorithms suited for high complexity
environments. A further direction of research could be the
extension to a cooperative inference framework where BSs
exchange mutual-soft information for accuracy enhancement.
Moreover, more realistic environments with simulated foliage
and dynamic obstructions should be explored. Challenges are
represented by NLOS situations, changes in the environment
and lack of possible representative samples for each feasible
location.
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Fig. 9. Variational inference problem as described in [116]. The generative
model is indicated by solid lines while variational approximation is reported
with dashed lines.

APPENDIX A
PROOF OF (15)

In this Appendix we provide a proof of the anomaly
score contribution given by zi. From the variational inference
approach [96], we can note that the likelihood network per-
forms the same objective of latent variable inference. To see
this parallelism, we recall the variational inference context
where we are given an observation h (i.e., latent variable)
from the prior distribution pθh with parameters θ. Subsequently,
a datapoint x is generated from pθx|h, which is considered
intractable. The objective is to estimate the exact posterior pθh|x,
also intractable, with a simpler variational posterior qϕh|x with
parameters ϕ. For a graphical representation of the problem,
please refer to Fig. 9 [116].

We can view the datapoint x as a compact representa-
tion of the channel zi and the latent variable h as the
distribution p(zi). Let us denote the probability as si =
pz(zi), which can be approximated with the KDE ŝi =
K

(
zi|{zj}Ns

j=1

)
, the likelihood network Lϕ(·) (with param-

eters ϕ) will be acting as the variational distribution qϕ(·).
Following this parallelism, the contribution of zi to the
anomaly score, i.e., negative log-likelihood, can be written as
follows:

−log pz(zi) = −log
∫
s

pz,si

(
zi, s

)
ds (16)

= −log
∫
s

Lϕ
(
s|zi

) pz,si

(
zi, s

)
Lϕ

(
s|zi

) ds

≤ −
∫
s

Lϕ
(
s|zi

)
log

pz,si

(
zi, s

)
Lϕ

(
s|zi

) ds (17)

where (17) is the consequence of Jensen’s inequality. It follows
that

−log pz(zi) ≤ −ELϕ

{
log pz,si

(
zi, s

)
−logLϕ

(
s|zi

)}
= −log pz(zi) + KL

(
Lϕ

(
s|zi

) ∥∥ psi|z
(
s|zi

))
⋍ −logK

(
zi|{zj}Ns

j=1

)
+ KL

(
Lϕ

(
s|zi

) ∥∥ pŝi|z
(
ŝ|zi

))
, (18)

where the approximation in (18) is due to (12), concluding the
proof.
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