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Abstract—Accurate positional information is crucial for nu-
merous emerging applications in fifth generation (5G) and be-
yond wireless ecosystems. However, the localization requirements
defined by the 3rd Generation Partnership Project (3GPP)
are particularly challenging to achieve, especially in complex
environments such as urban scenarios, due to non-line-of-sight
conditions, outdoor-to-indoor penetration loss, and multipath
propagation. Such effects are detrimental to localization accu-
racy, especially at mmWaves. This paper introduces the concept
of blockage intelligence (BI) to provide a probabilistic represen-
tation of wireless propagation conditions. Such representation
is then exploited in soft information (SI)-based localization to
overcome the limitations of conventional localization approaches.
Localization case studies are presented according to the 3GPP-
standardized urban microcell (UMi) scenario at mmWaves with
fully 3GPP-compliant simulations. Results show that BI together
with SI-based localization is able to provide a significant perfor-
mance gain with respect to existing techniques in 5G and beyond
wireless networks.

Index Terms—5G, localization, NLOS identification, 3GPP,
wireless networks.

I. INTRODUCTION

Location awareness [1] is fundamental to network oc-
chestration and to enable a myriad of applications in fifth
generation (5G) and beyond wireless networks [2], [3], includ-
ing autonomous driving [4]–[6], smart environments [7]–[9],
and Internet-of-Things (IoT) [10]–[12]. In particular, 5G and
beyond wireless networks in urban environments can leverage
accurate localization to provide several services, including
support to first responders, traffic monitoring, and flow con-
tol [13]. In this context, 3rd Generation Partnership Project
(3GPP) study items for 5G Advanced (5GA) are putting an
increasing emphasis on expanding and enhancing the local-
ization capabilities of 5G networks [14], [15]. This can be
accomplished by leveraging other improvements expected for
5GA, including the use of artificial intelligence and machine
learning (ML) techniques as well as enhancements in the data
collection [16], [17]. However, satisfying the key performance
indicators levels required by 3GPP for localization accuarcy
is particularly challenging. Urban scenarios are characterized
by complex propagation conditions due to non-line-of-sight

(NLOS) propagation, outdoor-to-indoor (O2I) penetration loss,
and multipath propagation [18], [19]. Such impairments are
detrimental to localization accuracy, especially at millimeter
waves [20]. Therefore, enhanced localization techniques are
needed to unleash the full potential of localization in 5G and
beyond networks at mmWaves. In particular, NLOS identifi-
cation techniques are expected to provide a great benefit to
localization algorithms.

Exisiting approaches for NLOS identification exploit char-
acteristics of the wireless environment to provide binary infor-
mation on NLOS propagation conditions [21]–[23]. However,
the binary information provided by existing NLOS identifica-
tion is unable to represent the different conditions that may
generate NLOS propagation. Moreover, several techniques for
NLOS identification require a prior characterization of the
wireless environment, which is not always available, especially
in dynamic environments like urban scenarios.

The goal of this paper is to improve localization accuracy
in complex wireless environments. We introduce the concept
of blockage intelligence (BI) to overcome the limitations of
existing NLOS identification [24]. The key idea is to leverage
the rich information encapsulated in the received signals to
provide a probabilistic characterization of the wireless channel
conditions. The information provided by BI is therefore seam-
lessly integrated with the recently proposed soft information
(SI)-based localization [25] to enhance location awareness in
5G and beyond wireless networks. We advocate the use of BI
not only as a probabilistic NLOS identification, but also as an
indicator of the quality of the wireless channel conditions.

This paper introduces the concept of BI to improve location
awareness in complex urban wireless scenarios. The key
contributions of this paper can be summarized as follows:

• introduction of the BI concept for providing a probabilis-
tic characterization of wireless propagation conditions in
urban scenarios; and

• quantification of the localization performance gain en-
abled by BI in the 3GPP-standardized urban microcell
(UMi) scenario.
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The remainder of the paper is organized as follows. Sec-
tion II briefly describes localization in 5G networks; Sec-
tion III describes a method for obtaining BI; Section IV
presents two case studies in the 3GPP-standardized UMi
scenario; Finally, Section V provides our conclusions.

Notations: A random variable and its realization are denoted
by x and x; a random vector and its realization are denoted
by x and x; a set is denoted by calligraphic fonts as X . For
a vector x, its transpose is denoted by xT. For a complex
variable x, its conjugate is denoted by x∗. The smallest
integer grater or equal to x is denoted by ⌈x⌉. The function
fx(x;θ) indicates the probability distribution function (PDF)
of a continous random vector x parametrized by θ. Ex|y{·|y}
denotes the expectation with respect to the random variable x
conditional on y = y.

II. LOCALIZATION IN 5G NETWORKS

The goal of localization in 5G wireless networks is to
estimate the position p ∈ R2 of a user equipment (UE)
based on the exchange of measurements with a set of nodes,
namely gNodeBs (gNBs), with known positions and indexed
by j ∈ Nb = {1, 2, . . . , Nb}, where Nb is the number of
gNBs available for localization. 3GPP specifications define
two reference signals (RSs) obtained via orthogonal frequency
division multiplexing (OFDM) dedicated to localization, i.e.,
the positioning reference signal (PRS) for downlink (DL)
localization and the sounding reference signal (SRS) for uplink
(UL) localization [26]. The two reference signals can be
transmitted in both frequency range 1 (FR1) (i.e., central
frequency below 7.125 GHz) and frequency range 2 (FR2)
(i.e., central frequency between 24.25 GHz and 52.6 GHz)
with various time-frequency configurations [26]. According to
3GPP specifications [27], [28], the RSs can be transmitted and
processed to extract single-value estimates (SVEs) which can
be exploited to perform UE localization, including estimates
of time difference-of-arrival (TDOA), round-trip time (RTT),
and angle-of-departure (AOD).

A. Inference of SVEs

RTT and TDOA measurements are obtained based on time-
of-arrival (TOA) measurements. In particular, a conventional
approach for TOA estimation is based on the detection of the
delay associated with the earliest peak in the magnitude of the
cross-correlation between the transmitted and the received RS.
In more detail, let r[n] and s[n] denote the sampled version
of the received and of the transmitted RS, respectively. Then,
the cross-correlation between r[n] and s[n] is given by

R[n] =

Ns−1∑
k=0

r[n]s∗[n− k] (1)

for n = 0, 1, . . . , Ns−1, where Ns is the number of samples in
the received RS. To estimate the TOA, it is possible to proceed
iteratively on (1), detecting at each iteration the strongest peak
and then removing its contribution from the cross-correlation.
After NI iterations, where NI is selected as the number of
iterations that provide the minimum average ranging error, the

TOA is estimated as the smallest delay detected during the
iterative procedure [29]. Based on TOA estimations, the RTT
is obtained as the two-way TOA, accounting for both DL and
UL, while the TDOA is obtained subtracting the TOA of a
reference gNB to the TOA obtained from all the other gNBs
available for localization [30].

B. SI-based localization

SI-based localization has been recently proposed to over-
come the limitations of existing localization algorithms.
Specifically, SI-based localization leverages machine learning
techniques to provide a statistical characterization of the rela-
tionship between UE position, measurements, and contextual
information [25]. In paticular, SI is composed of soft feature
information (SFI) and soft context information (SCI), which
are exploited jointly for localization. Let y be a measurement
obtained exchanging information with a gNB and let θ be the
positional feature associated with y. Then, the corresponding
SFI is given by

Ly(θ) ∝ fy(y;θ). (2)

For example, if y denotes an RTT measurement, the corre-
sponding positional feature denotes the real distance between
the gNB and the UE.1 Given a collection of independent
measurements obtained from different gNBs, and considering
that no contextual information is available, the UE position
can be determined as

p̂ = argmax
p̃

∏
j∈Nb

Lyj
(θj(p̃)) . (3)

The SFI is obtained as proportional to a generative model,
which is an approximation of the joint probability distribution
of measurements and positional features. The generative model
can be estimated in complex wireless scenarios fitting a
Gaussian mixture model (GMM) to a training dataset using
the expectation-maximization algorithm [31].

III. BLOCKAGE INTELLIGENCE

Localization algorithms greatly benefit from the information
provided by NLOS identification. However, existing NLOS
identification techniques are binary, which makes the localiza-
tion algorithms unable to effectively account for the different
wireless propagation situations generated by NLOS conditions.

A. Feature extraction

To overcome the limitations of existing NLOS identification
techniques, the key idea of BI is to leverage the rich informa-
tion encapsulated in 5G received signals, and specifically in the
cross-correlation (1) between the transmitted and the received
RS. On the one hand, such cross-correlation encapsulates rich
information on the wireless channel conditions. On the other
hand, it is commonly available to localization algorithms as it
is necessary for TOA estimation [32], [33]. In particular, only
the absolute value of (1) is exploited for BI, which is

g[n] = |R[n]| (4)

1Note that in such case both y and θ are scalar values.
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TABLE I
STATISTICAL FEATURES USED FOR BI

Amplitude-based features Time-based features

µa =
1

Nc

Nc−1∑
m=0

g[m] µt =

Nc−1∑
m=0

mTs ğ[m]

σ2
a =

1

Nc

Nc−1∑
m=0

(g[m]− µa)
2 σ2

t =

Nc−1∑
m=0

(mTs − µt)
2 ğ[m]

κa =
1

Nc

∑Nc−1
m=0 (g[m]− µa)4

(σ2
a)

2
κt =

∑Nc−1
m=0 (mTs − µt)4 ğ[m](

σ2
t

)2

χa =
1

Nc

∑Nc−1
m=0 (g[m]− µa)3

(σ2
a)

3
2

χt =

∑Nc−1
m=0 (mTs − µt)3 ğ[m](

σ2
t

) 3
2

E =

Nc−1∑
m=0

g[m]2

M = max
m

g[m]

for n = 0, 1, . . . , Nc − 1 where Nc = ⌈Tm/Ts⌉, Ts is the
RS sampling time, and Tm is the maximum path delay such
that the received waveform contains positional information.
The value of Tm is selected empirically based on the char-
acteristics of the wireless scenario. However, g[n] can have
high dimensionality, especially when the RSs are transmitted
at mmWaves, and a dimensionality reduction is needed to
improve BI efficiency. We propose the use of a set of statistical
features able to capture relevant information on amplitude and
time dispersions of g[n]. The proposed set of features include
mean µ, variance σ2, kurtosis κ, and skewness χ of both the
amplitude and the time dispersion of g[n]. In addition, also the
energy E and the maximum value M of g[n] are considered.
The expressions of the features used for BI are reported in
Table I, where

ğ[n] =
g[n]∑Nc−1

m=0 g[m]
. (5)

B. Blockage intelligence model

The rich information obtained from the aforementioned
statistical features is exploited to provide a probabilistic char-
acterization of NLOS propagation conditions. In particular, the
problem of determining the probability of NLOS can be for-
malized as a two-class supervised classification problem [36],
[37]. Let γ ∈ {+1,−1} be a binary random variable that takes
value +1 and −1 for NLOS and LOS propagation conditions,
respectively, and let ν = [μa,σ

2
a, κa,χa,E,M, μt,σ

2
t , κt, χt] be

a random vector containing the estimators for the statistical

0 1 2 3 4 >51 2
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Fig. 1. Layout of the 3GPP UMi scenario. The red annuluses denote the
gNBs location. The background of the figure is an example instantiation of
the number of LOS gNBs for each point of the scenario. The coordinates on
the axis are in meters.

features in Table I. By considering an exponential loss func-
tion, a model c(ν) for NLOS classification is obtained as

c(ν) = argmin
c̆ :Rd→R

Eγ|ν{e−γc̆(ν) | ν} . (6)

Such approach for obtaining c(ν) is referred to as risk mini-
mization and entails the determination of a function that maps
a d-dimensional vector of statistical features extracted from the
received RS to a value in R which is used for classification. In
particular, equation (6) has a closed-form solution [36] given
by

c(ν) =
1

2
log

(
P{γ = +1 | ν}

1− P{γ = +1 | ν}

)
(7)

leading to

ψ(ν) = P{γ = +1 | ν} =
ec(ν)

e−c(ν) + ec(ν)
(8)

which is the NLOS probability given the set of statistical
features extracted from (1), i.e., the equation needed for BI.
However, since the joint probability distribution of γ and ν is
not known a priori, c(ν) cannot be obtained in closed-form
solving the risk minimization problem in (6). Therefore, it is
necessary to obtain an approximation of c(ν) via empirical
risk minimization (ERM) exploiting a training dataset D =
{(νn, γn)}Nd

n=1, where Nd denotes the number of training
samples [37]. In particular, the choice of an exponential
loss function enables efficient ERM via the Real AdaBoost
algorithm [38]. Such algorithm leverages the training data to
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Fig. 2. ECDF of the horizontal localization error in the 3GPP UMi scenario at 30 GHz for (a) RS transmission without PB; and (b) RS transmission with
PB. The localization performance are reported for (1) SI-based localization with BI; (2) SI-based localization without BI; (3a) results in [34]; and (3b) results
in [35].

combine several classifiers with high-bias and low-variance
(typically one-level decision trees [39]) to obtain an additive
model which approximates c(ν) up to a constant factor which
does not affect (8).

C. Blockage intelligence in SI-based localization

The integration of existing binary NLOS identification
techniques in SI-based localization relies on determining two
different generative models, tailored to NLOS and LOS prop-
agation conditions [25]. However, the performance of SI-
based localization would benefit from the integration of the
probabilistic NLOS information provided by BI. On the one
hand, the conventional binary information is not able to ac-
count for the different wireless propagation situations that may
generate NLOS conditions. On the other hand, errors in NLOS
identification may generate significative localization errors
since the generative models are specific to the propagation
conditions. To mitigate these challenges, we propose the direct
integration of the probabilistic information provided by BI in
the measurement vector used for SI-based localization, i.e.,
y′ = [y, ψ(ν)]. This enables to describe a wide variety of
wireless propagation conditions in the SI-based localization
model, leveraging the rich positional information provided
by BI.

IV. CASE STUDIES

This section analyzes and compares the performance gain
offered by SI-based localization with BI in urban scenarios. In
particular, performance is quantified in the 3GPP-standardized
UMi scenario at mmWaves [18]. Fig. 1 shows the layout of
the UMi scenario, which is composed of 19 gNBs with three
antenna sector for each gNB. The localization performance is
evaluated in FR2, i.e., where the effect of NLOS conditions

is more critical. Specifically, the PRS and the SRS are trans-
mitted with a central frequency of 30 GHz and a bandwidth
of 400 MHz. According to 3GPP specifications, it is possible
to enable power boosting on the PRS and SRS to improve the
localization performance [26]. In the following, localization
results are therefore reported considering the RSs transmission
with and without power boosting. Specifically, the power
boosting level is set equal to 7.78 dB and 6.02 dB for PRS
and SRS transmission, respectively [28]. Results are obtained
in full compliance with 3GPP technical reports. Specifically,
the RSs are generated according to the specifications in [26],
[28], and the gNBs and UEs characteristics are set according
to [18]. The wireless channels are generated as in [18] via the
QuaDriGa channel simulator [40].

To quantify the localization performance, 200 instantiations
of the UMi scenarios with spatially consistent wireless chan-
nels and NLOS conditions were generated. For each of them,
10 UEs were deployed in the scenario with random positions
and orientations. The SVEs considered for localization are
DL-TDOA, UL-TDOA, and RTT, as in 3GPP technical re-
ports [28]. Moreover, if BI is employed for localization, the
reference gNB for TDOA measurements is selected through
BI as the gNB which provides the lowest NLOS probability,
otherwise, it is selected as the gNB which provides the
maximum reference signal received power (RSRP). The data
are divided through 10-fold cross-validation [31]. The 70% of
the training data are used for training BI as in Sec. III and
for determining the number of iterations NI the minimizes the
TOA estimation error in the ranging algorithm as in Sec. II-A.
The remaining 30% of the training data are used for training
the generative model for SI-based localization, which consists
of a GMM with 12 components. Results are reported in terms
of the ECDF F̆ (eh) of the horizontal localization error eh for
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TABLE II
LOCALIZATION ERROR PERCENTILES

WITHOUT POWER BOOSTING

Percentile

Configuration 50th 67th 80th 90th

DL-TDOA: [34] 0.90 m 2.20 m 4.20 m 9.40 m
DL-TDOA: SI 0.81 m 1.36 m 2.27 m 4.00 m
DL-TDOA: SI+BI 0.73 m 1.09 m 1.46 m 2.54 m

UL-TDOA: [34] 2.20 m 6.20 m 16.80 m 95.30 m
UL-TDOA: SI 2.36 m 4.12 m 8.84 m 64.29 m
UL-TDOA: SI+BI 1.42 m 3.33 m 7.14 m 45.96 m

RTT: [34] 1.10 m 2.60 m 5.00 m 11.60 m
RTT: SI 1.27 m 2.30 m 3.83 m 7.15 m
RTT: SI+BI 0.84 m 1.47 m 2.53 m 4.63 m

TABLE III
LOCALIZATION ERROR PERCENTILES

WITH POWER BOOSTING

Percentile

Configuration 50th 67th 80th 90th

DL-TDOA: [35] 1.30 m 3.00 m 5.70 m 9.70 m
DL-TDOA: SI 0.76 m 1.15 m 1.79 m 3.07 m
DL-TDOA: SI+BI 0.62 m 0.94 m 1.56 m 2.19 m

UL-TDOA: [35] 3.50 m 6.30 m 11.10 m 18.30 m
UL-TDOA: SI 1.21 m 2.18 m 3.39 m 7.02 m
UL-TDOA: SI+BI 1.04 m 1.73 m 2.77 m 5.89 m

RTT: [35] 2.40 m 4.80 m 8.20 m 12.70 m
RTT: SI 0.83 m 1.37 m 1.99 m 2.97 m
RTT: SI+BI 0.73 m 1.10 m 1.54 m 2.33 m

SI-based localization with and without BI. In addition, such
localization performance is compared with results in 3GPP
technical reports [28]. Specifically, the results considered are
the ones reported in [34] and in [35] for localization without
and with power boosting, respectively.

A. Results in 3GPP UMi scenario without power boosting

Fig. 2a shows the ECDF of the horizonal localization error
for RSs transmission at 30GHz without power boosting. In
addition, the most significant localization error percentiles
are reported in Table II. It can be observed that the use
of SI-based localization with BI provides a significant local-
ization accuracy improvement with respect to both SI-based
localization without BI and results in 3GPP technical reports
[34]. In particular, considering DL-TDOA measurements, the
localization performance gain at the 90th percentile is equal
to 1.46 m and 6.86 m with respect to SI-based localization
without BI and results in [34], respectively. An even larger
gain is obtained considering localization based on RTT mea-
surements. Specifically, at the 90th percentile, the localization
error of SI-based localization with BI is equal to 4.63 m, which
consists in a significant improvement compared to the 7.15 m
achieved by SI-based localization without BI and the 11.60 m
reported in [34]. Finally, it can be observed that despite the sig-
nificant gain provided by BI with respect to other techniques
for localization with UL-TDOA, the localization performance
remains unsatisfactory. This is because the transmitted power
for UL localization in UMi scenario at mmWaves without
power boosting is not sufficient to obtain reliable UL-TDOA
measurements.

B. Results in 3GPP UMi scenario with power boosting

Fig. 2b shows the ECDF of the horizonal localization error
for RSs transmission at 30GHz without power boosting. In
addition, the most significant localization error percentiles are
reported in Table III. It can be observed that localization using
SI-based localization with BI via DL-TDOA measurements
enables sub-meter localization accuracy at the 67th percentile
and an accuracy of around 2.20 m at the 90th percentile. This

represents a gain of around 1 m with respect to SI-based
localization without BI and larger than 7 m if compared to
results in [35]. Similar localization accuracies are obtained for
localization with RTT measurements. In particular, SI-based
localization with BI enables a localization performance gain at
the 90th percentile of more than 10 m with respect to results
in [35]. Finally, the use of power boosting enables efficient
localization with UL-TDOA measurements. Specifically, SI-
based localization with BI provides a localization accuracy of
5.89 m at the 90th percentile, which represents a significant
performance gain with respect to the 7.02 m achieved by SI-
based localization without BI and the 18.30 m reported in [35].

V. CONCLUSION

This paper introduced the concept of blockage intelligence
(BI) to provide a probabilistic representation of wireless propa-
gation conditions in fifth generation (5G) and beyond wireless
networks. This is obtained by leveraging the rich positional
information encapsulated in the cross-correlation between
the transmitted and received reference signals (RSs). Results
show that the knowledge of information on wireless channel
propagation conditions is vital to enhance the performance
of localization algorithms, especially for location awareness
in complex wireless scenarios. In particular, the use of BI
together with soft information (SI)-based localization in 3rd
Generation Partnership Project (3GPP) urban microcell (UMi)
scenarios at mmWaves enables a significant performance gain
with respect to the localization performance reported in 3GPP
technical reports. The proposed approach represents a step
towards fulfilling the localization service level requirements
expected for 5G and beyond wireless networks.
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