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Abstract—In location-aware networks, only a subset of nodes
provides representative measurements for position inference.
Therefore, efficient high-accuracy localization calls for strategies
to select an appropriate subset of active nodes. While node
selection strategies benefit efficient localization, determining an
optimal subset of active nodes relies on knowledge of channel
state information whose acquisition overhead can be prohibitive.
This paper presents a probabilistic node selection strategy for
ultra-wideband network localization based on machine learning.
We formulate the node selection problem as a classification
task given a position estimate and determine near-optimal
access probabilities from training data obtained via model-based
optimization. A case study in a 3rd Generation Partnership
Project scenario validates the proposed strategy and compares
it against uniformly distributed random node selection.

Index Terms—Localization, node selection, network operation,
optimization, machine learning.

I. INTRODUCTION

Location awareness [1] is essential for civil, industrial, and

military applications including autonomy [2], public safety

[3], and Internet-of-Things [4]. The 3rd Generation Partner-

ship Project (3GPP) has defined performance requirements

for seven positioning service levels in terms of accuracy,

availability, and latency [5]. Location-aware networks must

fulfill service-level requirements regardless of the operation

conditions and employed technologies [6]. However, provid-

ing the required performance is difficult in complex wireless

environments, especially under limited resources.

Location-aware networks consist of anchors with known

positions and agents with unknown positions. Accurate local-

ization depends on the wireless resources, propagation con-

ditions, and deployment of nodes. In addition to localization

algorithms [7]–[9], location-aware networks require strategies

to optimize the utilization of wireless resources [10]. More

specifically, network localization can benefit from strategies

for the allocation of wireless resources [11], selection and

coordination of active nodes [12], and deployment of nodes

[13]. An appropriate selection of active nodes is crucial for

efficient localization since only a subset of nodes provides

representative measurements for position inference [14].

The problem of selecting representative measurements for

inference tasks has been studied in various settings [15]–

[19]. In location-aware networks, node selection strategies de-

termine the subset of active nodes for inter-node measure-

ments [20]–[24]. Conventional node selection strategies for

localization rely on knowledge of position estimates and

channel qualities to determine the optimal subset of nodes that

minimizes the position error. While such strategies provide

significant performance improvements, the acquisition of such

parameters incurs signaling and processing overhead that

can be prohibitive for location-based services with stringent

latency requirements [5]. Probabilistic node selection reduces

such an overhead by employing access probabilities to choose

the active nodes [10]. However, the localization performance

provided by probabilistic node selection relies on determining

optimal access probabilities, which is challenging in com-

plex wireless environments. In this regard, machine learning

techniques [25]–[28] offer the possibility of estimating near-

optimal access probabilities from training data.

The goal of this paper is to develop a probabilistic node

selection strategy for efficient network localization in complex

wireless environments. The key idea consists of formulating

the node selection problem as a classification task to deter-

mine near-optimal access probabilities from training data.

This paper presents a probabilistic node selection strategy

for network localization based on machine learning. We

formulate the node selection problem as a classification task

given a position estimate to learn access probabilities from

training data obtained via model-based optimization. The key

contributions of this paper are as follows:

• development of a probabilistic node selection strategy

for network localization based on machine learning; and

• quantification of the performance provided by the devel-

oped node selection strategy.

The remaining sections are organized as follows: Section II

formulates the problem. Section III describes the proposed

node selection strategy. Section IV presents a case study.

Finally, Section V gives our conclusions.

Notations: Random variables are displayed in sans serif,

upright fonts; their realizations in serif, italic fonts. Vectors

and matrices are denoted by bold lowercase and uppercase

letters, respectively. For example, a variable is denoted by x;

a random vector and its realization are denoted by x and x,

respectively; a matrix is denoted by X . Sets are denoted by

calligraphic font. For example, a set is denoted by X . The

m-dimensional vector of zeros (resp. ones) is denoted by 0m
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(resp. 1m): the subscript is removed when the dimension of

the vector is clear from the context. The transpose of a vector

x is denoted by xT. The trace of a matrix X is denoted by

tr {X}. The Euclidean norm and direction of a vector x are

denoted by ‖x‖ and ∠x, respectively. Notation a < b denotes

element-wise inequality between vectors a and b.

II. PROBLEM FORMULATION

This section formulates the node selection problem.

A. System Model

Consider a 2D location-aware network consisting of

a single agent and Nb anchors with index set Nb =
{ 1, 2, . . . , Nb}. The positions of the agent and anchor k are

denoted by p and pk for k ∈ Nb, respectively. The distance

and angle between the positions of the agent and anchor k
are denoted by dk(p) = ‖p− pk‖ and φk(p) = ∠(p− pk),
respectively. The goal is to select a subset Ns ⊂ Nb of

|Ns| = Ns active anchors for inter-node measurements to

maximally improve the localization accuracy of the agent.

The received waveform from anchor k at the agent is

modeled as

rk(t) =
√

γkG

Lk
∑

l=1

α
(l)
k s

(

t− τ
(l)
k

)

+ zk(t) (1)

where γk is the transmitting power, G is a gain related

to the antenna directivity and center frequency, s(t) is the

transmitted waveform, Lk is the number of received multipath

components, α
(l)
k and τ

(l)
k are the amplitude and delay of the

lth received component, and zk(t) is the observation noise de-

scribed by an additive white Gaussian process with two-sided

power spectral density N0/2. The channel coefficients are

denoted by wk = [α
(1)
k , τ

(1)
k , α

(2)
k , τ

(2)
k , . . . , α

(Lk)
k , τ

(Lk)
k ]T,

which is a realization of a random vector wk with statistics

according to a prescribed channel model [29], [30]. The

relationship between the agent position and τ
(l)
k is given by

τ
(l)
k =

1

c

[

dk(p) + b
(l)
k

]

(2)

where c is the propagation speed of the signal and b
(l)
k > 0 is a

range bias with b
(1)
k = 0 and b

(1)
k > 0 for line-of-sight (LOS)

and non-line-of-sight (NLOS) conditions, respectively [31].

B. Localization Performance Metric

The localization accuracy can be quantified in terms of the

mean-square error (MSE) of the position estimator p̂ [32]. The

equivalent Fisher information matrix (EFIM) for the agent

position p as a function of the node selection vector (NSV)

u = [u1, u2, . . . , uNb
]T can be expressed as [14]

J(u;p,w,γ) =

Nb
∑

k=1

uk ξk(p,wk, γk)Jr
(

φk(p)
)

(3)

where uk ∈ {0, 1} for k ∈ Nb, w = [wT
1 ,w

T
2 , . . . ,w

T
Nb

]T,

and γ = [ γ1, γ2, . . . , γNb
]T. In (3), ξk(p,wk, γk) is the range

information intensity (RII) of the inter-node measurement

with anchor k as a function of p, wk, and γk, and Jr(φ)
is the range direction matrix (RDM) with angle φ. The RII

ξk(p,wk, γk) and RDM Jr(φ) are given by

ξk(p,wk, γk) =
8π2β2

c2
[

1− χk(p,wk)
]

̺k(p,wk, γk) (4a)

Jr(φ) =

[

cos2 φ cosφ sinφ
cosφ sinφ sin2 φ

]

(4b)

respectively. In (4a), β is the effective bandwidth of s(t),
χk(p,wk) ∈ [0, 1) is the path-overlap coefficient (POC), and

̺k(p,wk, γk) = γk G
(

α
(1)
k

)2
/N0 is the signal-to-noise ratio

(SNR) of the first received path.

The MSE of the position estimator p̂ as a function of the

NSV u is lower bounded by [14]

P(u;p,w,γ) = tr
{

[

J(u;p,w,γ)
]−1

}

(5)

which is referred to as the squared position error bound

(SPEB). This bound is asymptotically achievable and can be

used for the design of node selection strategies [10].

C. Node Selection Problem

The goal of the node selection strategy is to minimize the

position error by selecting Ns active anchors for inter-node

measurements. Given knowledge of p, w, and γ, the node

selection problem can be formulated as

Pp,w,γ : minimize
u

P (u;p,w,γ) (6a)

subject to uT
1 = Ns (6b)

uk ∈ {0, 1}, k ∈ Nb (6c)

where (6b) indicates the constraint on the total number of

active anchors to be selected and (6c) describes the decision

space of the variables in the NSV. The number of anchors Ns

is a design choice that can also be optimized. The transmitting

power levels can be set arbitrarily (e.g., uniform power

allocation) or optimized via a node prioritization strategy [10].

Since P (u;p,w,γ) is convex for u < 0 given p, w, and

γ, the combinatorial problem Pp,w,γ can be solved approxi-

mately via a convex relaxation and a rounding operation [15],

[33]. Specifically, the convex relaxation of (6) can be obtained

by rewriting the constraint (6c) as 0 6 uk 6 1 for k ∈ Nb.

Note that the optimal solution of the node selection problem

(6) is lower bounded by that of its convex relaxation.

Remark 1: Solving (6) can be prohibitive for location-

based services with stringent latency requirements due to the

overhead of obtaining channel state information. This calls

for strategies that do not require such a knowledge and select

the active nodes based on probabilistic measures.

D. Probabilistic Node Selection

Probabilistic node selection is an alternative approach to

solve (6) that reduces the overhead related to the acquisition

of channel state information. In particular, this approach relies

on a set of access probabilities A(p) = { p
(p)
1 , p

(p)
2 , . . . , p

(p)
Nb
}

that depends on p with p
(p)
k > 0 and

∑Nb

k=1 p
(p)
k = 1. Node
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selection strategies based on random access select anchors

randomly according to predefined probabilities p
(p)
k , e.g.,

uniformly distributed random selection. Since such strategies

can select any node with non-zero probability, the localization

accuracy may be compromised with the overhead reduction.

In contrast, node selection strategies based on deterministic

access estimate access probabilities p̂
(p)
k and select the an-

chors with the highest scores. In the latter case, estimating

optimal access probabilities is essential to obtain reliable

localization performance. In the next section, we develop

a probabilistic node selection strategy that estimates near-

optimal access probabilities employing machine learning.

III. PROBABILISTIC NODE SELECTION STRATEGY

This section develops a probabilistic node selection strategy

that learns access probabilities from training data.

A. Node Selection Strategy

Consider probabilistic node selection with optimized ac-

cess probabilities Å(p) = { p̊
(p)
1 , p̊

(p)
2 , . . . , p̊

(p)
Nb
} describing

which of the available anchors are more likely to provide

representative measurements to an agent located at p. Given

a position estimate p̂, we select the Ns anchors with the

highest access probabilities. Therefore, we determine the NSV

ů = [ ů1, ů2, . . . , ůNb
]T whose elements are given by

ůk =

{

1 if p̊
(p̂)
k is one of the Ns largest elements in Å(p̂)

0 otherwise

(7)

in which ties are broken arbitrarily. Fig. 1 illustrates this

node selection strategy for Ns = 3 active anchors. In

this figure, clear-solid red annuluses represent anchors with

low-high access probability, red-yellow contours depict the

position uncertainty of the agent, and arrows denote the

measurements with the active anchors selected. For optimized

access probabilities, the localization performance provided

by this strategy must approximate that obtained by solving

Pp,w,γ , but without requiring any further parameter besides

the position estimate. We propose a two-stage node selection

strategy consisting of: (i) offline training to learn the access

probabilities from data obtained via model-based optimiza-

tion; and (ii) online operation to select the active anchors

based on estimates of the probabilistic scores.

To determine the access probabilities, we consider a node

prioritization problem for power allocation. The optimal

solution to this problem provides information about how

many and which anchors have to be selected for inter-node

measurements as will be discussed next. Given p and w, the

considered node prioritization problem is formulated as

P̆p,w : minimize
γ

P̆ (γ;p,w) (8a)

subject to γT
1 6 γT (8b)

γ < 0 (8c)

anchor

agent

blockage

poor channel

Fig. 1. Probabilistic node selection strategy: anchors are selected based on
access probabilities given a position estimate.

where the EFIM for the agent position p and SPEB are

rewritten as functions of the vector γ as

J̆(γ;p,w) =

Nb
∑

k=1

ξk(p,wk, γk)Jr
(

φk(p)
)

(9a)

P̆(γ;p,w) = tr
{

[

J̆(γ;p,w)
]−1

}

(9b)

respectively. In P̆p,w, (8b) indicates the constraint on the

total transmitting power γT and (8c) describes that the

transmitting power levels are nonnegative. The objective in

(8a) is convex for γ < 0 given p and w [10]. Therefore,

P̆p,w is a convex program that can be solved via standard

convex optimization techniques, e.g., interior-point methods

[33]. Note that the problem P̆p,w can be transformed into

a second-order cone program (SOCP) allowing the use of

efficient solvers [10].

Let γ̆ = [ γ̆1, γ̆2, . . . , γ̆Nb
]T denote the optimal solution

to (8). Such a solution can be used to determine both the

number of active anchors and the NSV simultaneously. More

specifically, the optimal NSV related to γ̆ is denoted by ŭ =
[ ŭ1, ŭ2, . . . , ŭNb

]T with elements given as

ŭk =

{

1 if γ̆k > 0

0 otherwise
(10)

and the optimal number of active anchors is N̆s = ŭT
1.

The sparsity property of γ̆ establishes that the transmitting

resources are allocated to at most three active anchors [10].

Therefore, we have that N̆s 6 3. In particular, we employ

NSVs in the form of ŭ to obtain training data for learning

near-optimal access probabilities via machine learning.

B. Training Phase

Consider a classification problem where, given a position

estimate p̂, we determine a vector of access probabilities

â = [ p̂1, p̂2, . . . , p̂Nb
]T for soft node selection based on

(7). Such a problem consists of Nb classes each of which

representing the selection of a single anchor. The goal is

to determine a parametric mapping to estimate the access

probabilities in a supervised learning setting with training data

obtained from solving instantiations of the problem P̆p,w.

For a given instantiation of P̆p,w, we break the optimal NSV
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Algorithm 1 Training phase

Output: Approximate mapping f( · ; ψ̊).
1: Acquire training data {p̂(m), s̆(m)}m∈Ntrain

:

Obtain position estimate p̂;

Solve the model-based node prioritization problem (8);

Determine the NSV ŭ with elements given by (10); and

Break NSV ŭ into one-hot encoded vectors.

2: Determine approximate mapping f( · ; ψ̊) by fitting the

parameters of a prescribed neural network architecture to

training data.

ŭ into N̆s vectors indicating the selection of a single anchor

using one-hot encoding (also referred as 1-of-K encoding for

K classes [27]). Let s(i) = [ s
(i)
1 , s

(i)
2 , . . . , s

(i)
Nb

]T denote the

one-hot encoded vector for the selection of anchor i whose

elements are given by

s
(i)
k =

{

1 if i = k

0 otherwise
(11)

for k ∈ Nb. Therefore, each instantiation of the problem

P̆p,w with solution ŭ provides N̆s training examples of the

form (p̂, s(k)) for k such that ŭk = 1.

Let X and A denote the state and decision spaces, respec-

tively, such that p̂ ∈ X and â ∈ A. We consider a mapping

f : X 7→ A that provides near-optimal access probabilities

for node selection given position estimates. Let F denote

a parametric family of mappings with parameter space Ψ .

Each ψ ∈ Ψ determines a different mapping f( · ;ψ) ∈ F .

Specifically, we consider a neural network architecture to

obtain the desired mapping for probabilistic node selection. In

the training phase, we determine the parameters ψ̊ ∈ Ψ of the

prescribed neural network architecture that provide the best fit

to training data [34], [35]. Let {p̂(m), s̆(m)}m∈Ntrain
denote

the training data indexed by Ntrain. The position estimate can

be obtained using a specific localization algorithm, and the

target vector corresponds to one-hot encoded single anchor

selection obtained from model-based optimization in (8). In

particular, the model-based node prioritization problem can

be solved by transforming it into an SOCP and using a

standard interior-point method. For classification problems,

the output layer of the neural network employs a softmax

activation function that enables the probabilistic interpre-

tation of a categorical distribution with Nb elements, and

the objective function to fit the model is the cross entropy

loss [27], [28]. By minimizing the cross entropy loss in the

training phase, the neural network is encouraged to match

the labels of the training data and approximate the desired

distribution [35]. Algorithm 1 describes the training phase of

the proposed strategy.

C. Operation Phase

The training phase determines the parametric mapping

f( · , ψ̊) to estimate access probabilities for online node

selection. In the online phase, we rely on a position estimate

Algorithm 2 Online node selection

Input: Position estimate p̂, number of active anchors Ns.

Output: NSV û.

1: Estimate access probabilities using the approximate map-

ping obtained in the training phase

â← f(p̂; ψ̊).
2: Determine û by evaluating (13) based on â and Ns.

to determine the access probabilities and perform the node

selection. Given a position estimate p̂, we obtain the access

probabilities by evaluating the parametric mapping of the

feed-forward neural network as

â = f(p̂; ψ̊) . (12)

Then, we select Ns anchors according to the estimated NSV

û = [ û1, û2, . . . , ûNb
]T with elements given by

ûk =

{

1 if p̂k is one of the Ns largest elements in â

0 otherwise

(13)

in which ties are broken arbitrarily. In particular, the number

of active anchors Ns can be used as an input to provide further

degrees of freedom. Algorithm 2 describes the operation of

the proposed node selection strategy in the online phase.

IV. CASE STUDY

This section validates the proposed node selection strategy

in a case study. We consider ultra-wideband (UWB) nodes

[36] emitting root raised cosine pulses compliant with the

IEEE 802.15.4a standard [37]. The anchors are deployed

according to the 3GPP indoor open office scenario with

Nb = 12 (see Fig. 2) [30]. The wireless channels are

modeled according to the IEEE 802.15.4a channel model

for the indoor office scenario [29]. We consider spatially-

consistent LOS/NLOS states and wireless channel coefficients

[38] with the parameters specified for the 3GPP indoor open

office scenario in [30]. The RII between nodes in LOS

and NLOS conditions are determined following [39] and

set to zero, respectively. The noise figure, center frequency,

and maximum power spectral density are 10 dB, 6.489 GHz,

and -41.3 dBm/MHz, respectively [37]. The training data

is generated by solving 10,000 instantiations of the node

prioritization problem with random agent positions using

CVX [40]. We consider 70% of the data for training and 30%

for validation. The localization performance is evaluated on

new instantiations of test data that are not included in the

training phase.

We consider a fully-connected neural network architecture

consisting of three hidden layers with 64, 128, and 16

neurons, respectively, to validate the proposed approach. The

input and output layers have sizes of 2 and 12, respectively.

The activation functions of the hidden layers are rectified

linear units. The activation functions of the output layer are
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Fig. 2. Anchor deployment for the 3GPP indoor open office scenario [30].

softmax functions. The neural networks are trained using the

Adam algorithm [28] with 30 epochs and batch size of 128.

Table I shows the results of the training phase on val-

idation data for different values of Ns. We consider the

accuracy metric as the percentage of cases in which the

anchors selected by model-based optimization with perfect

knowledge of the channel state information are included in

the set of anchors chosen by the proposed strategy. The table

also reports the percentage of active anchors in LOS and

NLOS conditions, respectively. We can observe that, as Ns

increases, it is more likely to select the anchors with the most

favorable conditions as dictated by the solutions to the node

prioritization problem. However, the percentage of anchors in

LOS conditions decreases as Ns grows, indicating that more

nodes in unfavorable conditions are chosen. In particular,

these results show that neural networks can effectively learn

from the environment to provide reliable access probabilities

for node selection. Note that the proposed node selection

strategy only relies on an estimate of the agent position, while

model-based optimization requires channel state information

of every anchor to provide desirable performance.

Table II shows the results of the operation phase on test data

for different values of Ns considering the same metrics above.

The test data used for this evaluation was not included in the

training phase. The results for online operation are consistent

with those obtained during training. We can observe that the

accuracy improves, while the percentage of active anchors in

LOS and NLOS conditions are similar to those obtained in

the training phase. These results indicate the effective training

of the neural network for reliable online operation.

Next, we evaluate the performance provided by the trained

neural network in online operation. We compare the following

strategies considering uniform power allocation:

• uniformly distributed random node selection — Ns ac-

tive anchors in LOS conditions are selected randomly

according to a uniform distribution;

• probabilistic node selection — Ns active anchors are se-

lected according to the proposed node selection strategy.

In particular, localization performance is evaluated in terms

of the empirical cumulative distribution function (ECDF) of

the position error metric (the square root of the SPEB).

Fig. 3 shows the performance of the proposed node se-

lection strategy for different values of Ns. We consider

the performance obtained via model-based optimization with

TABLE I
TRAINING PHASE RESULTS ON VALIDATION DATA.

Ns Accuracy (%) LOS (%) NLOS (%)

3 74.8 89.2 10.8

4 90.0 84.1 15.9

5 95.5 77.5 22.5

6 98.4 71.9 28.1

TABLE II
OPERATION PHASE RESULTS ON TEST DATA.

Ns Accuracy (%) LOS (%) NLOS (%)

3 77.8 89.0 11.0

4 91.3 84.0 16.0

5 96.3 77.6 22.4

6 98.7 71.9 28.1

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Position error metric [m]

E
C
D
F

(a)

(b)

(c)

(d)

(e)

Fig. 3. ECDF of the position error metric for: (a) uniformly distributed
random selection with Ns = 3; (b) uniformly distributed random selection
with Ns = 4; (c) proposed strategy with Ns = 3; (d) proposed strategy with
Ns = 4; and (e) model-based optimization.

perfect knowledge of channel state information as benchmark.

We can observe that the proposed node selection strategy

outperforms conventional strategies based on uniformly dis-

tributed random selection. Note that, for Ns = 3 active

anchors, the performance approaches that obtained via model-

based optimization with optimal power allocation. Note that

the gaps with respect to the benchmark are due to the absence

of channel state information and the use of uniform power

allocation. For example, the position errors of the proposed

node prioritization strategy with Ns = 3 and the model-

based optimization at the 80th percentile are 0.81 and 0.66 m,

respectively, implying a performance loss of 22.7%. At such

mark, random node selection with Ns = 3 provides an

error of 2.29 m, implying that the proposed strategy reduces

the position error by 64.6%. The results indicate that the

proposed node selection strategy can select favorable anchors

and provide adequate performance with only the position

estimate as parameter.

V. CONCLUSION

This paper presented a probabilistic node selection strategy

for UWB network localization based on machine learning.

Specifically, the node selection problem is formulated as a
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classification task to learn near-optimal access probabilities

from training data obtained via model-based optimization.

Numerical results in a 3GPP indoor open office scenario

show the benefits of probabilistic node selection for efficient

localization. In particular, the trained neural network learns

from the environment and allows selecting the active anchors

with only an estimate of the agent position. The proposed

node selection strategy shows the effectiveness of machine

learning techniques to optimize the operation of location-

aware networks in complex wireless environments.
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