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Abstract—In the rapidly evolving domain of forthcoming 6th
generation (6G) networks, achieving precise dynamic positioning
down to the centimeter becomes critical, particularly in complex
urban scenarios as those envisioned for cooperative intelligent
transport systems (C-ITSs). To face the challenges introduced
by severe path loss and blockages in new 6G frequency bands,
machine learning (ML) provides innovative strategies to extract
locational intelligence from wide-band space-time radio signals.
This paper proposes the integration of Bayesian neural networks
(BNNs) into cellular multi-base station (BS) tracking systems,
where uncertainties of BNNs account for finite training sets and
measurement errors. Our approach utilizes a deep learning (DL)-
based autoencoder (AE) structure that exploits the full channel
impulse response (CIR) to infer location-centric attributes in both
line-of-sight (LoS) and non-LoS (NLoS) conditions. Validations in
a 3rd Generation Partnership Project (3GPP) compliant urban
micro (UMi) setting, simulated with ray-tracing and traffic sim-
ulations, demonstrate the superior performances of BNN-based
tracking with respect to both traditional geometric-based tracking
methods and state-of-the-art DL models.

Index Terms—Bayesian neural networks, cooperative tracking,
positioning, channel impulse response, 6G.

I. INTRODUCTION

The forthcoming 5th generation (5G) Advanced in 3rd

generation partnership project (3GPP) Release 18 promises a

significant leap in cellular positioning accuracy, aiming for

centimeter-level precision through features such as massive

multiple-input multiple-output (mMIMO), increased band-

widths, and millimeter waves (mmWave) technologies [1]–[3].

Challenges include higher path losses and frequent blockages,

which limit conventional positioning solutions. 5G Advanced

addresses these challenges by integrating machine learning

(ML) into enhanced location services [4], [5]. In particular,

exploiting deep learning (DL) techniques, such as autoencoder

(AE) structures, permits to perform direct position estimation

by matching channel impulse response (CIR) location finger-

prints with pre-stored training data [6], [7]. This is critical
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in non-LoS (NLoS) conditions where reflections cause non-

negligible measurement errors in geometric-based algorithms.

Despite ML’s potential, a main limit is the lack of uncer-

tainty quantification, especially for critical applications such as

connected automated vehicles (CAV) positioning [8]. Bayesian

neural networks (BNNs) offer a solution by not only providing

point estimates but also quantifying the associated uncertainty,

leading to more reliable and robust positioning [9]. The uncer-

tainty derives from the limited spatial density of training data

(epistemic uncertainty) and the measurement noise (aleatoric

uncertainty). BNNs can be particularly resilient in static posi-

tioning, as they incorporate prior knowledge and are able to

quantify the different types of uncertainty.

BNNs have been recently used for uncertainty estimation

in static 5G localization [10], [11]. However, these works

do not exploit the predicted uncertainty for refining the user

equipment (UE) position. Regarding 5G mobile positioning, the

majority of works rely on traditional Bayesian methods, such

as extended Kalman filter (EKF) or message passing algorithm

(MPA) [12], in conjunction with mmWave and MIMO enablers.

In the field of DL, recurrent neural networks (RNNs) have

been gathering much attention thanks to their ability to learn

temporal dependencies [13]. Moreover, a recent study [14]

investigated the usage of attention mechanism in temporal

convolutional networks (TCNs) for NLoS outdoor tracking,

achieving a state-of-the-art mean absolute error (MAE) of 1.8

m. Nevertheless, RNNs and TCNs face limitations in mobile

positioning due to the need for highly accurate training data

(i.e., ground truth for dynamic trajectories) and their inability

to quantify prediction uncertainty, hindering their use in safety-

critical contexts.

In this paper, we propose a novel BNN-based 6th generation

(6G) tracking procedure that relies on an offline training phase

and subsequent integration of BNN uncertainties in a Bayesian

tracking scheme. Inspired by 3GPP’s vision on future mobile

systems and the superior results obtained in NLoS identification

[7] and positioning [6], we integrate the BNN methodology into

an AE structure that exploits the full CIR for positioning, i.e.,

the 2D angle-delay channel power matrix (ADCPM). We test

the proposed methodology in a realistic cooperative intelligent

transport system (C-ITS) scenario within an urban landscape.

Our simulated network adheres to 5G standard-compliant sce-
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narios [15] and provides realistic outdoor conditions through

the use of accurate 3D ray tracing, along with microscopic

vehicular traffic modeling for simulation of UE pathways [16].

The article is structured as follows. Sec. II outlines the

system architecture and the channel fingerprint. Sec. III intro-

duces BNNs terminology and our proposed DL model. Sec. IV

presents the integration of BNNs into the cellular positioning

system. Sec. V details the simulation setup and findings, while

Sec. VI draws the conclusions.

Notations: A random variable and its realization are denoted

by x and x; a random vector and its realization are denoted by

x and x; a random matrix and its realization are denoted by X

and X , respectively. The function px(x), and simply p(x) when

there is no ambiguity, denotes the probability density function

(PDF) of x. With the notation x ∼ N (µ, σ2) we indicate a

Gaussian random variable x with mean µ and standard deviation

σ, whose PDF is denoted by N (x;µ, σ2). With the notation

x ∼ U(a, b) we indicate a Uniform random variable x with

support [a, b]. We use E{·} and V{·} to denote the expectation

and the variance of random variable, respectively. R and C

stand for the set of real and complex numbers, respectively.

II. 6G POSITIONING SYSTEM

A. Space-Time Channel Model

We consider a mmWave orthogonal frequency division mul-

tiplexing (OFDM) system in which an uplink communication

is established between a UE and a number of base stations

(BSs) at a specific carrier wavelength λc. Each BS is equipped

with a uniform planar array (UPA) consisting of Nv × Nh

isotropic antenna elements, whereas the UE is outfitted with an

omni-directional antenna. The channel comprises Np distinct

propagation paths, each one characterized by its time of flight

(ToF) τp and angle of arrival (AoA), represented by zenith

angle θp ∈ [0, π] and azimuth angle φp ∈ [0, π] for path

p = 1, . . . , Np. Defining with Ts the sampling interval and

Nc the number of sub-carriers, we obtain a symbol duration of

Tc = NcTs. The frequency for the k-th sub-carrier is fk = k
Tc

,

k = 0, . . . , Nc − 1, and we assume that the cyclic-prefix

duration of Tg = NgTs exceeds the channel’s maximum delay

τMAX, where Ng indicates the number of sampling intervals

comprising a guard interval.

Assuming a sampling rate of 1/Ts and treating each path as

independent and wide-sense stationary, the channel frequency

response (CFR) for the k-th sub-carrier over a UE-BS link is

expressed as follows [17], [18]:

hk =

Np
∑

p=1

αpe
−j2πτpfk e(θp,φp), (1)

where e(θp,φp) ∈ C
NhNv is the array response vector

[19], and αp = ape
−j2π(

dp

λc
−νpτp) is the complex gain of p-

th path which includes the Doppler frequency shift νp and

has average power σ2
p = E

{

|ap|
2
}

and dp = c τp is the

traveled distance (where c is the speed of light in air). The

overall space-frequency channel response matrix (SFCRM) is

H = [h0 h1 . . . hNc−1] ∈ C
NhNv×Nc .
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Fig. 1. (a) ADCPM fingerprint with NhNv = 64 angle indexes and Ng = 352
delay indexes. (b) Corresponding deterministic macro paths from the UE to the
BS.

B. Location Fingerprinting

Location estimation benefits significantly from transforming

the channel response into the angle-delay domain, i.e., into the

ADCPM domain. This conversion encapsulates in a convenient

representation all the location-related parameters like ToF,

AoA, and received signal strength (RSS) for each propagation

path, including both line-of-sight (LoS) and NLoS components,

which change depending on the surrounding environment, thus

acting as location-specific signatures or fingerprints. The larger

the number of antenna elements and bandwidth, the more

precise and stable the estimation, owing to improved spatial

and frequency resolution. To extract features from the angle-

delay domain, we adopt the same methodology described in [6]

and obtain the ADCPM P ∈ R
NhNv×Ng . For an example of

ADCPM and related propagation paths, we refer to Fig. 1. In

our experimental setup, we utilize the ADCPM P as the input

x for the DL model, as a measure for performing positioning

and subsequent tracking.
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III. BNN METHODOLOGY

A. Problem Formulation

Consider a ML supervised regression setting where the target

UE position t, here considered as a scalar, is modelled as:

t = f(x) + ε(x), (2)

where f(x) is a non-linear function that relates the ADCPM

measurement x to the location and ε(x) ∼ N
(

0, σε(x)
2
)

.

The aim is to train a neural network (NN) y(x, θ) with

parameters θ to approximate f(x) using an input training

dataset D = {(tn,xn) | tn ∈ Dt,xn ∈ Dx}
N
n=1 with N train-

ing points. Assuming independence between target variables tn
and the Gaussian random noise ε, we can write the likelihood

function of θ as:

pDt|Dx,θ(Dt|Dx,θ) =

N
∏

n=1

N
(

tn; y(xn,θ), σε(xn)
2
)

. (3)

In traditional ML frameworks, a discriminative probabilistic

approach is utilized [20], where the NN parameters (deter-

ministic variables) are computed through maximum likelihood

estimation (MLE). Conversely, Bayesian frameworks employ a

stochastic network characterized by random parameters with a

prior distribution pθ(θ), which reflects the model’s uncertainty

due to the limited size of the training dataset. Bayesian NN

models adopt a generative approach by calculating the so-called

posterior predictive distribution [21]:

pt|x,D(t|x,D) =

∫

θ′

pt|x,θ(t|x,θ
′)pθ|D(θ

′|D)dθ′, (4)

where pθ|D(θ|D) is the computational intractable posterior

distribution. As a solution, most BNN methodologies strive to

approximate pθ|D(θ|D) through a sampling process and then

compute (4) using Monte Carlo (MC) sampling as follows:

pt|x,D(t|x,D) ⋍
1

L

L
∑

ℓ=1

p(t|x,θℓ), (5)

where L is the number of samples θℓ drawn from pθ|D(θ|D).
From (5), we obtain the mean prediction, i.e., predictive mean,

as:

E{t|x,D} ⋍

1

L

L
∑

ℓ=1

∫

t′
t′p(t′|x,θℓ)dt

′
⋍

1

L

L
∑

ℓ=1

y(x,θℓ). (6)

For computing the variance of the prediction, i.e., predictive

variance, we also need to estimate the variance of the noise in

(2). This is usually performed through an additional NN output

yal(x, θ) according to the model [22]:

σε(x)
2
= yal(x, θ) + ξal, (7)

where ξal ∼ N (0, σ2
ξal

). The predictive variance is finally

computed as:

V{t|x,D} ⋍

1

L

L
∑

ℓ=1

∫

t′
(t′ − E{t|x,D})

2
p(t′|x,θℓ)dt

′

⋍

1

L

L
∑

ℓ=1

y(x,θℓ)
2 −

(

1

L

L
∑

ℓ=1

y(x,θℓ)

)2

Encoder E Decoder D

Positioning

module

x x̂z

[

y(x,θ)
yal(x,θ)

]

Fig. 2. Proposed DL model composed of an autoencoder (AE) and a
positioning module, which outputs the target estimate y(x,θ) and related
aleatoric uncertainty yal(x,θ).

+
1

L

L
∑

ℓ=1

yal(x,θℓ), (8)

where the first two terms are the epistemic uncertainty predic-

tion, while the last term is the aleatoric uncertainty prediction.

B. DL Model Based on Autoencoder

For position estimation, we propose the integration of an AE

within each BS to extract essential features from the sparse

ADCPM samples x, as illustrated in Fig. 2. The encoder

function E(x) translates these samples into latent features z,

capturing the channel’s intrinsic location-specific information.

In turn, the decoder function D(z) reconstructs the original

input, yielding x̂. The AE is designed to minimize the recon-

struction error ∥x− x̂∥22 [23], facilitating the model’s ability to

replicate the input x through the compressed representation in

z. Moreover, the DL model integrates a multi-layer perceptron

(MLP) positioning module that leverages the compact latent

features to estimate the 3D position of the target.

For prediction uncertainty, we employ the stochastic gradient

Langevin dynamics (SGLD) BNN algorithm [24], which guar-

antees to directly sample from the real posterior pθ|D(θ|D).
To speed up convergence, the AE is treated as a standard NN,

whereas the positioning module is trained as a full BNN with

SGLD optimizer. The loss function for single input x is:

Err(θ|x) = λpos A(θ|x) + λrec∥x− x̂∥22, (9)

where λpos determines the significance of position estimation,

λrec modulates sample reconstruction and A(θ|x) is the corre-

sponding matrix version of:

A(θ|x) =
1

2
log
(

yal(x,θ)
)

+
∥t− y(x,θ)∥22
2 yal(x,θ)

. (10)

Equation (10) is derived from A(θ|x) = − log p(t|x,θ) and

permits the training of the BNN with the SGLD optimizer.
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IV. TRACKING WITH BNN METHODOLOGY

A. Tracking Problem

We address the problem of Bayesian tracking for a mobile

target, characterized by a non-linear state evolution [25]:

tn = f (t)
n (tn−1) + ε

(t)
n−1, (11)

where f
(t)
n (tn−1) denotes the non-linear state transition func-

tion at time n − 1, and ε
(t)
n−1 represents a non-independent

and identical distributed (IID) noise component. The tracking

system’s measurements are modeled as:

xn = f (x)
n (tn) + ε

(x)
n , (12)

where f
(x)
n (tn) links the state to the measurement via a

non-linear relationship, and ε
(x)
n is another non-IID noise

component. Additionally, we denote the cumulative set of

measurements up to time n as x1:n = {xi, i = 1, . . . , n}. The

Bayesian tracking proceeds by alternating two phases at each

time step. In the prediction phase, the state is updated using

the Chapman–Kolmogorov equation [25]:

p(tn|x1:n−1) =

∫

p(tn|tn−1)p(tn−1|x1:n−1)dtn−1, (13)

where p(tn−1|x1:n−1) and p(tn|x1:n−1) are the posterior PDF

at time n − 1 and the prior PDF at time n, respectively. The

subsequent update phase then incorporates measurements to

refine the posterior at time n:

p(tn|x1:n) ∝ p(xn|tn)p(tn|x1:n−1). (14)

To incorporate complex measurements such as the ADCPM,

an efficient representation or computation of the non-linear

function f
(x)
n (tn) becomes crucial. NN can be employed to

approximate such function from training data, as proposed in

the next section.

B. Incorporating BNN into Tracking Systems

The integration of BNN into tracking systems involves

a collection of BSs, denoted by SBS. During the offline

training phase, each base station j exploits a local dataset

D(j) =
{

t
(j)
n ,x

(j)
n

}N(j)

n=1
to train its respective BNN. In the

online tracking phase, a subset of base stations SBS,n ⊆ SBS

detects the target at timestep n and performs tracking according

to Algorithm 1. We propose to maintain the prediction phase

unchanged while seamlessly integrate BNN into the update

phase. This strategy eases the incorporation into existing al-

gorithms, allowing for the replacement or augmentation of the

update component with BNN, and permits more precise and

accurate training procedures. Upon concluding the prediction

phase and acquiring the prior PDF p(tn|x1:n−1), each base

station j in SBS,n provides the posterior predictive distri-

bution p
(

tn|x
(j)
n ,D(j)

)

, denoted as p
(

tn|x
(j)
n

)

. Then, since

at each timestep n, the BNN lacks prior knowledge of the

target’s previous position at n − 1, formally represented as

tn ∼ U
(

t
(j)
min, t

(j)
max

)

, where t
(j)
min and t

(j)
max are the limits

of the coverage area of the j-th BS, we can write that

p
(

x
(j)
n |tn

)

∝ p
(

tn|x
(j)
n ,D

)

. This formulation facilitates the

fusion of multiple base station predictions with the prior PDF

on the target state, resulting in an updated posterior.

Algorithm 1 Tracking procedure

Input: Posterior p(tn−1|x1:n−1) at time n− 1 ▷ Run at BS j
at timestep n

Output: Posterior p(tn|x1:n) at time n
1: Compute prediction phase in (13)

2: Measure sample x
(j)
n

3: Compute p
(

x
(j)
n |tn

)

∝ p
(

tn|x
(j)
n ,D

)

4: for j′ ∈ SBS,n\{j} do

5: Send p
(

x
(j)
n |tn

)

to j′

6: Receive p
(

x
(j′)
n |tn

)

from j′

7: end for

8: Update p(tn|x1:n) ∝
∏

j∈SBS,n
p
(

x
(j)
n |tn

)

p(tn|x1:n−1)

Practically, the posterior predictive distribution is described

by two parameters, i.e., the predictive mean (6) and the pre-

dictive variance (8). Therefore, we propose to approximate the

likelihood function obtained by each BS with a multivariate

normal distribution as:

p
(

x(j)
n |tn

)

⋍ N
(

x(j)
n ;E

{

tn|x
(j)
n ,D

}

,V
{

tn|x
(j)
n ,D

})

= N
(

x(j)
n ;µ(j)

n ,Σ(j)
n

)

. (15)

This approximation makes it very easy and effective com-

puting (14) by combining the likelihood functions of the

BSs as p(xn|tn) =
∏

j∈SBS,n
p
(

x
(j)
n |tn

)

∝ N
(

xn;µn,Σn

)

where [26]:

µn = Σn

(

∑

j∈SBS,n

Σ(j)−1

n µ(j)
n

)

, (16)

Σn =

(

∑

j∈SBS,n

Σ(j)−1

n

)−1

. (17)

V. NUMERICAL RESULTS

A. Simulation Setup

For the simulations, we employ a ray-tracing method [27],

utilizing the Wireless InSite 3D prediction tool [28], in con-

junction with a 5G new radio (NR) MATLAB clustered delay

line (CDL) channel model at carrier frequency fc = 28 GHz

and bandwidth B = 400 MHz. The experiment includes a

3GPP urban micro (UMi) setting [15] within a 1000 × 1000

m area near the MIT campus in Cambridge, MA, USA, shown

in Fig. 3. The setting includes 19 sites, each with an inter-site

distance (ISD) of 200 m, forming a hexagonal layout. Each

site comprises 3 BSs, elevated 25 m and angled 120 degrees

apart. The BSs employ a UPA configuration, derived from [29],

with Nv = Nh = 8 antenna elements and have a 15-degree

mechanical downtilt. UE trajectories are generated by the

SUMO software [16], which simulates realistic vehicular traffic.

During the 600-second simulation, 100 vehicle trajectories were

created, collecting data points every second. This resulted in

2593 and 702 positions for training and testing, respectively,
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Fig. 3. 3D map representation of the ray-tracing scenario in the area of
Massachusetts Institute of Technology (MIT), Cambridge, USA.

and approximately 9.3 · 104 and 2.5 · 104 training and testing

ADCPM samples, respectively.

The AE segment of the DL positioning model is built

using the Segnet architecture [30], handling the sparsity of

the ADCPM input and facilitating robust feature extraction

crucial for precise positioning. The positioning module is

composed of an MLP with a number of neurons in each layer

of: [16, 32, 64, 128, 256, 512, 256, 128, 64, 32, 16, 9], and GeLu

activation functions. Moreover, softplus activation functions are

placed at the output of the positioning module in the diagonal

entries to ensure non-negative variances. Additionally, regu-

larization terms are added to the diagonals of the covariance

matrix predictions to guarantee non-singularity and symmetry.

The models were trained for 600 epochs with a batch size of

M = 256 and L = 40. The learning rate was set to 10−5,

to ensure stable convergence. The hyper-parameters λrec and

λpos were empirically set using a grid method in the range

[0.1, 1] with a step size of 0.1, resulting in values of 0.1

and 0.9, respectively. The prior distribution of the parameters

was chosen to be spherical Gaussian, as in standard SGLD

initialization, with regularizer λprior = 0.1.

B. Mobile positioning in urban environment

This experiment evaluates the performance of the proposed

BNN-based tracking approach with respect to a geometric-

based EKF and a state-of-the-art TCN model [14]. To ensure a

fair assessment, both the BNN method and the EKF utilize iden-

tical motion models, i.e., a random walk with a positional stan-

dard deviation of 2 m. The EKF employs traditional geometric

localization techniques using LoS time difference of flight

(TDoF) measurements, derived from cross-correlation with the

sounding reference signal (SRS) according to 3GPP standards,

and LoS AoA measurements via the multiple signal classifi-

cation (MUSIC) algorithm [31]. Additionally, in light of the

substantial signal obstruction caused by urban structures, UEs

are outfitted with global navigation satellite systems (GNSS)

receivers that provide state measurements with a Gaussian noise

standard deviation of 2 m. Conversely, the BNN-based tracking

relies on both LoS and NLoS ADCPM measurements. For

the TCN model, it adopts a 1D CIR representation of the

closest BS, converting the 2D ADCPM into a singular vector,

as recommended in [14].

The tracking results are presented in Fig. 4 through the

absolute location error per timestep and the number of LoS

BSs. Additionally, Fig. 5 presents the CDF of the positioning

errors across all methodologies. From Fig. 4, we can note that

the EKF struggles to maintain a location accuracy below 2

meters when fewer than three LoS BSs are available. Indeed,

despite the dense UMi setting, we observe 1.6 LoS BSs on

average. In contrast, the TCN model exhibits marginally supe-

rior performance, accurately tracking UE positions even with

a single BS measurement, due to its fingerprinting approach.

Nonetheless, the BNN-based tracking demonstrates consistent

sub-meter precision even in the absence of LoS BSs. The supe-

rior performance with respect to traditional methods is derived

from its ability to coherently merge multiple NLoS position

estimates. On the contrary, the BNN-based model outperforms

the TCN model thanks to the exploitation of the 2D ADCPM

within an AE structure that discerns spatial correlations in

the input data. Moreover, the fusion of BSs measurements is

weighted by the uncertainty of the model, resulting in more

consistent performances. The CDF of the absolute errors further

confirms the BNN-based tracking’s dominance, achieving a

median error of 46 cm and staying under 1 meter in 87% of

the cases.

VI. CONCLUSION

In this work, we tackled the challenge of 6G tracking in

urban areas characterized by significant signal obstructions.

We proposed an integration of BNNs into a Bayesian tracking

system, where full CIRs, i.e., 2D ADCPM, are processed as

measurements through an AE-based DL model. Realistic sim-

ulations, within a C-ITS environment and 3GPP-compliant UMi

ray-tracing scenario, show superior performances compared to

geometric-based tracking filters and advanced TCN models,

achieving a median absolute positioning error of just 46 cm.

REFERENCES

[1] 3GPP, “Study on artificial intelligence (AI)/machine learning (ML) for
NR air interface,” 3rd Generation Partnership Project (3GPP), TR 38.843,
2022, version 18.0.0.

[2] “Summary of RAN rel-18 workshop,” 2021, document RWS-210659,
3GPP RAN Chair, 3GPP Technical.

[3] J. Zheng, J. Zhang et al., “Asynchronous cell-free massive MIMO with
rate-splitting,” IEEE J. Sel. Areas Commun., vol. 41, no. 5, p. 1366–1382,
2023.

[4] X. Lin, “An overview of 5G advanced evolution in 3GPP release 18,”
IEEE Commun. Stand. Mag., vol. 6, no. 3, pp. 77–83, 2022.

[5] L. Italiano, B. Camajori Tedeschini et al., “A tutorial on 5G positioning,”
ArXiv, 2023.

[6] B. Camajori Tedeschini and M. Nicoli, “Cooperative deep-learning
positioning in mmWave 5G-advanced networks,” IEEE J. Sel. Areas

Commun., vol. 41, pp. 1–18, 2023.

[7] B. Camajori Tedeschini, M. Nicoli et al., “On the latent space of mmWave
MIMO channels for NLOS identification in 5G-advanced systems,” IEEE

J. Sel. Areas Commun., vol. 41, no. 6, pp. 1655–1669, 2023.

2024 IEEE International Conference on Communications (ICC): SAC Machine Learning for Communications and Networking Track

2293



A
b

so
lu

te
E

rr
o

r
[m

]
N

u
m

.
B

S
L

o
S

Time n

t 2
[m

]

t1 [m]

Fig. 4. Ground truth and predicted UE trajectories within the UMi urban scenario of Fig. 3 (left). Tracking performances in terms of absolute location error
and number of BSs in LoS per timestep (right).
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