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Abstract—In recent years, cooperative positioning technologies
have emerged as promising augmentation systems for provid-
ing high-accuracy positioning (HAP) in cooperative intelligent
transportation systems (C-ITS). Among the approaches, implicit
cooperative positioning (ICP) takes advantage of shared target
detections between vehicles to create common reference points for
localization refinement. Their performance, however, is limited
by reliance on predefined parametric models, low scalability and
communication overhead. To address these problems, this paper
introduces a deep multi-agent reinforcement learning (MARL)
framework modelled as a decentralized-partially observable
Markov decision process (Dec-POMDP). We propose an ICP-
multi-agent proximal policy optimization (MAPPO) algorithm,
where distributed agents (i.e., the connected vehicles) learn their
dynamics and those of the surrounding targets by performing
belief estimation over dynamic cooperation graphs that are
continuously adjusted by de/activating communication links with
neighbors agents. A C-ITS scenario is simulated in a CARLA
environment accounting for realistic vehicle dynamics and inter-
vehicle communications. The findings reveal that our ICP-
MAPPO algorithm, leveraging dynamic decentralized execution
and centralized training, outperforms ICP in terms of positioning
accuracy and communication efficiency.

Index Terms—Autonomous agents, cooperative positioning,
multi-agent reinforcement learning, CARLA simulator.

I. INTRODUCTION

In an era where automated mobility services are increasingly

prevalent, the accuracy of localization technologies has be-

come of paramount importance [1]. New-generation connected

vehicles integrate advanced sensor suites and 5th generation

(5G) vehicle-to-everything (V2X) communications to enhance

connectivity and positioning services, setting a new standard

for mobile localization in cooperative intelligent transport sys-

temss (C-ITSs) [2]–[4]. Cooperative positioning (CP) emerges

as a promising approach to enhance localization accuracy

through inter-vehicle sidelink communications, sharing infor-

mation about passive objects to mitigate global navigation

satellite systems (GNSS) degradation [5]–[7].

The fundamental research described in this paper was supported in part
by the Roberto Rocca Doctoral Fellowship granted by the Massachusetts
Institute of Technology and Politecnico di Milano, in part by the project Centro
Nazionale per la Mobilità Sostenibile (MOST), spokes 6 and 9, funded by the
Italian Ministry of University and Research under the PNRR funding program,
in part by the National Science Foundation under Grant CNS-2148251, and
in part by the Federal Agency and Industry Partners in the RINGS Program.

Traditional CP methods leverage passive objects coopera-

tively detected in the surroundings as anchor points to be

used for refining vehicle positioning by Bayesian-filtering.

Framework of this type are the cooperative simultaneous

localization and mapping (SLAM) [8], [9] and the implicit

cooperative positioning (ICP) [10]–[12]. ICP methodologies

have shown to outperform cooperative SLAM in terms of

efficiency and accuracy in vehicle positioning [13]. However,

these methods strive with high computational complexity

and scalability issues when aggregating data across multiple

vehicles. Despite attempts to address these limitations through

distributed message passing algorithm (MPA) [14] or dynamic

model adjustments [15], challenges in communication over-

head and computational burden persist, hindering scalability.

The integration of machine learning (ML) and, more specif-

ically, multi-agent reinforcement learning (MARL) into CP

represents a paradigm shift in addressing the limitations of

traditional Bayesian methods. ML provides innovative solu-

tions for handling scalability in complex graphs and non-

linearity/Gaussianity in models [16]–[18], with MARL and

related deep learning (DL) variants being particularly effective

in complex decision-making environments where independent

agents share a common objective (i.e., reward) and decisions

(i.e., actions) are based on incomplete or uncertain data

about the system state [19]. In the literature of CP, such

framework, namely decentralized-partially observable Markov

decision process (Dec-POMDP) [20], has been applied either

to intelligent swarm-based systems [21], such as unmanned

aerial vehicles (UAVs), for tracking purposes, or for enhanc-

ing conventional Bayesian filtering through agent scheduling

strategies [22], but not concurrently. On the contrary, MARL

algorithms specialized on communications completely discard

the state estimation part [23] and do not focus on commu-

nication efficiency but rather on how to optimally weigh the

received information from the neighbors [24].

This paper aims at combining the two aspects, i.e., the

estimation of the agents’ state and the optimization of the

agent-to-agent cooperation graph in a unique dynamic MARL

framework In particular, we present a novel MARL algorithm,

referred to as ICP-multi-agent proximal policy optimization

(MAPPO), designed specifically for efficient distributed and

cooperative position estimation. We formulate agent-specific
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Fig. 1. 3D representation of the scenario with three vehicles and three
objects (snapshot extracted from CARLA). A2A communication links and
A2T detections are indicated with black and red arrows, respectively.

policies for optimizing communication scheduling among

neighboring agents while concurrently acquiring an under-

standing of the environmental dynamics through the inte-

gration of neighbors’ observations. We adopt a centralized-

training to learn beliefs based on minimum mean square error

(MMSE) criterion and policies from MAPPO objective func-

tions. Then, during dynamic-decentralized-execution, the net-

work graph is modified according to the agents actions and the

state is estimated from the beliefs. Through rigorous validation

in realistic C-ITS scenarios simulated with Carla [25] (see

Fig. 1), our approach demonstrates superior performance in

positioning accuracy and communication efficiency compared

to existing ICP state-of-the-art solutions.

The structure of the article is as follows: Sec. II outlines the

system model involving cooperative agents. Sec. III presents

the the MARL framework and the proposed ICP-MAPPO

algorithm for CP. Sec. IV delineates the simulation setup and

discusses the outcomes of the experiments. Lastly, Sec. V

draws the conclusions.

Notations: A random variable and its realization are denoted

by x and x; a random vector and its realization are denoted

by x and x; a random matrix and its realization are denoted

by X and X , respectively. The function px(x), and simply

p(x) when there is no ambiguity, denotes the probability

density function (PDF) of x. With the notation x ∼ N (µ, σ2)
we indicate a Gaussian random variable x with mean µ and

standard deviation σ, whose PDF is denoted by N (x;µ, σ2).
We use E{·} and V{·} to denote the expectation and the

variance of random variable, respectively. R stands for the

set of real numbers.

II. SYSTEM MODEL

We indicate the vehicular network graph at time t as Gt =
(V, Et), where V = {1, . . . , N} denotes the set of vehicles or

agents (i.e., the nodes), and Et represents the communication

links among them (i.e., the edges). Each agent i ∈ V has a

set Ni,t of neighboring agents at time t and it is described by

a state s
(A)
i,t ∈ R

4×1, comprising the 2D position and velocity

vectors, respectively, within a global coordinate framework.

The collective state of all vehicles at time t is denoted as

s
(A)
t =

[
s
(A)
i,t

]N
i=1

. The kinematic state transition for vehicle i
at time t follows the model:

s
(A)
i,t = f (A)

(
s
(A)
i,t−1,w

(A)
i,t−1

)
(1)

with w
(A)
i,t−1 encapsulating the driving noise, which accounts

for motion uncertainty. The state-transition PDF following

from the above model is T
(
s
(A)
i,t |s

(A)
i,t−1

)
≜ p

(
s
(A)
i,t |s

(A)
i,t−1

)
.

The environment also includes K static and passive objects

(targets), gathered in the set F = {1, . . . ,K}, which vehicles

can detect. In this work, we select roadside poles as detectable

objects as they are widely spread and easily recognizable,

especially in urban mobility contexts. Generalization to other

kind of objects is possible for different scenarios. Each pole

k has a constant 2D position state s
(T)
k,t ∈ R

2×1, and s
(T)
t =[

s
(T)
k,t

]
k∈F

aggregates all passive object states at time t. Lastly,

the aggregated state of the system is st =
[
s
(A)
t

⊤

s
(T)
t

⊤]⊤
.

Vehicles are equipped with a GNSS receiver, a proximity

positioning system, and a passive sensing technology such

as radio detection and ranging (RADAR), light detection and

ranging (LIDAR) or camera. The GNSS receiver provides a

vehicle’s state estimate s
(A)
i,t , modeled as:

o
(GNSS)
i,t =H s

(A)
i,t + n

(GNSS)
i,t (2)

with n
(GNSS)
i,t ∼ N

(
02×2,R

(GNSS)
i,t

)
representing zero-mean

Gaussian noise and and H = [I2 02×2] ∈ R
2×4. The

proximity positioning system permits agent-to-agent (A2A)

relative position measurement between vehicles (i, j) ∈ Et:

o
(A2A)
i,j,t =H

(
s
(A)
i,t − s

(A)
j,t

)
+ n

(A2A)
i,j,t (3)

being n
(A2A)
i,j,t ∼ N

(
02×2,R

(A2A)
i,j,t

)
an additive zero-mean

Gaussian noise term. The passive sensor enables agent-to-

target (A2T) measurements for detecting passive objects k ∈
Fi,t within vehicle proximity, formulated as:

o
(A2T)
i,k,t =H s

(A)
i,t − s

(T)
k,t + n

(A2T)
i,k,t (4)

where n
(A2T)
i,k,t ∼ N

(
02×2,R

(A2T)
i,k,t

)
represents zero-mean

Gaussian noise. From (2), (3) and (4), we defined their corre-

sponding likelihoods p
(
o
(GNSS)
i,t |s

(A)
i,t

)
, p

(
o
(A2A)
i,j,t |s

(A)
i,t , s

(A)
j,t

)

and p
(
o
(A2T)
i,k,t |s

(A)
i,t , s

(T)
k,t

)
, respectively. The vector of all

available measurements of vehicle i at time t is de-

noted as oi,t =
[
o
(GNSS)
i,t

⊤

o
(A2A)
i,t

⊤

o
(A2T)
i,t

⊤]⊤
, with o

(A2A)
i,t =[

o
(A2A)
i,j,t

]
j∈Ni,t

and o
(A2T)
i,t =

[
o
(A2T)
i,k,t

]
k∈Fi,t

.
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Given the likelihood of all measurements O
(
ot|st

)
≜

p
(
ot|st

)
and the state transition PDF p

(
st|st−1

)
, the objective

of CP is to estimate ŝt according to the MMSE criterion as:

ŝt = E{st|o1:t} =

∫
st p

(
st|o1:t

)
dst (5)

where o1:t =
[
ot′

]t
t′=1

are the aggregated measurements up

to time t and p
(
st|o1:t

)
is the posterior PDF defined as:

p
(
st|o1:t

)
∝ p

(
ot|st

) ∫
p
(
st|st−1

)
p
(
st−1|o1:t−1

)
dst−1 .

(6)

We denote the marginal posterior PDF of agent i (or belief )

with b
(
si,t|o1:t

)
≜ p

(
si,t|o1:t

)
. Note that this model assumes

vehicles can accurately associate A2T measurements to known

targets, focusing on CP challenges without the complexities

of data association. Conventional ICP solutions solve this

problem by performing either a centralized extended Kalman

filter (EKF) [12] or a distributed MPA up to convergence [10].

In both cases, the solution is optimal only in the presence of

linear and Gaussian models. This paper focuses on developing

a MARL algorithm that enables agents to automatically learn

the underlying models in non-linear and non-Gaussian settings

and to improve communication efficiency through selective

interaction with neighbors.

III. MARL FOR METHODOLOGY

A. MARL Framework

The framework for cooperative multi-agent systems (MAS)

is conceptualized as a finite-horizon Dec-POMDP, represented

by the tuple ⟨V,S,A, T0, T,O, O,R, γ,H⟩. Here, V encapsu-

lates the cooperative agents (i.e., vehicles), while S and A
indicate the state and action spaces, respectively. T0 specifies

the initial state distribution at t = 0, and T
(
st|st−1,at

)
=

p
(
st|st−1,at

)
describes the state transition PDF, integrating

the actions at =
[
ai,t

]
, i ∈ V , into the state dynamics st.

Each timestep t brings a joint observation ot ∈ O, derived

from O
(
ot|at−1, st

)
= p

(
ot|at−1, st

)
, and a reward rt

from a reward function R
(
st,at

)
= rt. Lastly, γ and H

are the discount factor and time horizon of the episode,

respectively. Here, with episode, we indicate the duration of

the simulation or real-world application within which agents

operate, reflecting the predetermined number of timesteps over

which strategic decisions and actions are executed.

Given the partial observability of states and rewards, agents

maintain histories hi,1:t = hi,t =
[
(ai,t′−1,oi,t′)

]t
t′=1

,

encapsulating past actions and observations. State esti-

mates ŝi,t are inferred using MMSE from the belief

bψ(si,t|oi,t,ai,t−1,hi,t−1) parameterized by ψ, with actions

sampled from the policy πθ(ai,t|hi,t) parameterized by θ. The

objective of the MARL method is to maximize the expected

cumulative discounted reward as maxπ J(π) = E{R0}, where

Rt =
∑H−1

t′=t γt′−t
rt′ , called reward-to-go, is the cumulative

discounted reward from time t to the end of the episode.

B. ICP-MAPPO

For solving the CP problem, while optimizing the com-

munication/cooperation graph among agents, we propose the

following Dec-POMDP:

1) Agents: Each agent in this model corresponds to a

vehicle, indexed by i ∈ V , participating in the network.

2) Actions: The action taken by agent i at time t, namely

ai,t =
[
ai,j,t

]N
j=1

, involves a binary decision ai,j,t ∈ {0, 1} on

whether to establish communication with agent j. This permits

to actively modify the connectivity graph and thus enabling a

better communication efficiency.

3) States: The states are s
(A)
t , while the states of targets

s
(T)
t are implicitly learned by the latent features of the neural

networks (NNs).

4) Observations: Observations available to each vehicle,

denoted as oi,t, encompass GNSS, A2A, and A2T measure-

ments.

The general scheme for the Dec-POMDP is shown in Fig. 2.

Note that neither the state transition of the environment, nor

the rewards are observed by the agents. On the contrary, only

observations are gathered and stored by the agents within

histories, which are then used for action and state estimation.

Therefore, as in the state-of-the-art literature of MARL, for

ICP-MAPPO, we adopt a centralized-training procedure, en-

abling the agents to perform policy optimization and belief

optimization, while having access to the full observable state

st and measurements ot. Afterwords, the learned policies are

deployed independently among agents, exploiting the mod-

ification of the coordination graph’s structure based on the

agents’ actions, ranging from a fully-connected to a fully-

decentralized configuration. Therefore, we call this approach

centralized-training and dynamic-decentralized-execution.

The ICP-MAPPO for execution is composed of a long

short-term memory (LSTM) and multi-layer perceptron (MLP)

models for belief and action predictions, respectively, as:

ŝi,t,h
b
i,t = bψ(si,t|oi,t, āi,t−1, h̄

b
i,t−1) (7)

ai,t ∼ πθ(ai,t|h
b
i,t) . (8)

āi,t =
[
āi,j,t

]N
j=1

denotes the adjusted action set for agent i
at time t and it is derived by sampling actions from the policy

distribution while also considering the network’s connectivity

constraints:

āi,j,t =

{
ai,j,t if j ∈ Ni,t ,
−1 otherwise .

(9)

Furthermore, h̄b
i,t encapsulates the belief LSTM’s hidden

features, offering a condensed representation of the interaction

histories between agent i and its chosen neighbors up to the

previous timestep:

h̄b
i,t =

hb
i,t +

∑
j∈V h

b
j,t 1(āi,j,t == 1)

1 +
∑

j∈V 1(āi,j,t == 1)
(10)

where 1(·) acts as the indicator function, yielding 1 if the

specified condition is met and 0 otherwise. We note that the
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ŝ
1

ŝ
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Fig. 2. Dec-POMDP scheme adopted in the ICP-MAPPO algorithm for agent
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′

stands for t + 1 for graphical
purposes.

action decisions at time t in (8) rely predominantly on informa-

tion from the previous timestep, h̄b
i,t−1. This is because agent

i cannot preemptively access its neighbors’ measurements,

hb
j,t, ∀j ∈ V , to decide on communication actions. The actions

āi,t play two essential roles within the belief LSTM frame-

work. First, they enable to incorporate which agents have been

chosen for measurement fusion, crucial for making accurate

state predictions. Second, by assigning negative values to

actions when connectivity is not possible, each agent can

implicitly discern its identification or index, enabling scalable

and efficient training with parameter sharing [26].

In selecting the MARL algorithm, we favored policy op-

timization (PO) methods over Q-learning due to the latter’s

inherent bias issues when integrated with DL, leading to

inaccuracies in estimating state-action values or Q-values.

In contrast, PO algorithms exhibit significantly lower bias

by directly optimizing the objective function J(π) and have

demonstrated superior performance in MARL contexts [27].

Although PO algorithms are characterized by high variance,

necessitating extensive samples for convergence, this challenge

is addressable through the learning of value functions, such

as V π(st) or Qπ(st,at), which predict the expected long-

term rewards for given states or state-action pairs. Specifically,

we employ MAPPO [27] value estimation modelled with a

recurrent neural network (RNN) with parameters φ as:

V̂φ(si,t,h
V
i,t−1),h

V
i,t = Vφ(si,t,h

V
i,t−1) (11)

where hV
i,t are the hidden features of Vφ, also called critic.

On the contrary, πθ is referred to as actor.

The actor and the critic are optimized according to the loss

functions in MAPPO, with the difference that here the actor is

a MLP since the hidden histories in the execution are contained

in the belief LSTM. We define the reward function to incentive

actions that lead to a specified improvement β in positioning

accuracy at future timesteps. Essentially, each agent i evaluates

whether choosing a different agent j′ over agent j would have

resulted in better performance. This concept is encapsulated

in the following reward structure:

rt =





−1 if
∥∥st − ŝt

∥∥2
2
−
∥∥st+1 − ŝt+1

∥∥2
2
≤ −β

+1 if
∥∥st − ŝt

∥∥2
2
−
∥∥st+1 − ŝt+1

∥∥2
2
> β

+2 if − β <
∥∥st − ŝt

∥∥2
2
−

∥∥st+1 − ŝt+1

∥∥2
2
≤ β.
(12)

Initially, a reward of −1 is assigned if the action deteriorates

positioning accuracy by more than β. A reward of +1 is

granted for an improvement exceeding β, and as the learning

progresses towards convergence with smaller improvements, a

long-term reward of +2 is introduced to encourage sustained

accuracy gains. The belief function bψ utilizes a mean square

error (MSE) loss function as:

L(ψ) =
1

NLτ

∑

i∈V

Lτ∑

ℓ=1

∥∥ŝi,t − si,t
∥∥2
2

(13)

where Lτ is the length of a trajectory.

The pseudo-code for the ICP-MAPPO is reported

in Algorithm 1, where τt is a transitions defined

as τt = (st,ot,h
b
t , h̄

b
t ,h

V
t ,at, āt, rt, st+1,ot+1, ŝt+1) and

Âi,ℓ = Rℓ − V̂φold
(si,ℓ,h

V
i,ℓ−1) is the advantage function

estimate. ICP-MAPPO algorithm is an on-policy, low-bias

algorithm, leveraging latest policy-generated data for agent

training. A centralized value function, incorporating the state

si,t in (11) beyond local observations, aids in precise value

estimation. The belief computation aligns with model-based

value estimation (MBVE) in reinforcement learning (RL) [28],

utilizing learned dynamics for state prediction to reduce vari-

ance without introducing bias. Finally, rewards in (12) are

linked to belief improvements in future timesteps rather than

direct action outcomes, permitting to optimize actions for the

CP objective function minb J(b) = minb E
{∑

t

∥∥st − ŝt
∥∥2
2

}
.

IV. SIMULATION EXPERIMENTS

A. Simulation Setup

For the experiments, we created a C-ITS environment using

CARLA software [25] on an urban layout named Town02,

covering an area of of 200×200 m2. A view of this map is

illustrated in Fig. 1. In this scenario, 20 connected automated

vehicles (CAVs) are uniformly generated within the map’s

limits and navigate for H = 1500 time steps, with each step

occurring every 0.2 seconds. In the scene, there are also 72

poles, which are detected by the CAVs if they fall within a

direct line of sight and a sensing distance of 70 meters. This
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Algorithm 1 Implicit Cooperative Positioning Multi-Agent

Proximal Policy Optimization (ICP-MAPPO)

1: Input: actor, critic and belief parameters θ = θold,

φ = φold, and ψ.

2: for each training step n = 1, . . . , Nstep do

3: Initialize empty batch B = {} and trajectory τ = [ ]
4: Initialize histories hV

i,0 and hb
i,1 for critic and beliefs

5: Initialize state estimate ŝ0
6: for t = 1 to H do

7: for all agents i ∈ V in parallel do

8: Sample action ai,t ∼ πθold(ai,t|h
b
i,t)

9: Send hb
i,t and receive hb

j,t ∀j ∈ Ni,t

10: Get value estimate V̂φold
(si,t,h

V
i,t−1) with (11)

11: Compute āi,t and h̄b
i,t with (9) and (10)

12: Observe si,t+1,oi,t+1

13: Get state estimate ŝi,t+1 with (7)

14: end for

15: Observe rt and store τt in τ

16: end for

17: Compute advantage estimate Âi,t ∀ t and agent i on τ

18: Compute reward-to-go Rt for each ∀ t on τ

19: Split trajectory τ into chunks of length Lτ

20: for each ℓ = 0, . . . , ⌊H/Lτ⌋ do

21: B = B ∪
{
τt, Ât, Rt

}ℓ+Lτ

t=ℓ

22: Adam update of ψ on L(ψ) with data
{
τt
}ℓ+Lτ

t=ℓ

23: end for

24: for each mini-batch do

25: Sample
{
τℓ
}Lτ

ℓ=1
∼ B

26: Adam update of θ on L(θ) with data
{
τℓ
}Lτ

ℓ=1

27: Adam update of φ on L(φ) with data
{
τℓ
}Lτ

ℓ=1
28: end for

29: θold = θ, φold = φ
30: end for

sensing range is also consistent for A2A interactions. More-

over, we introduce Gaussian noise with a standard deviation

of 2 meters to the GNSS, A2A, and A2T measurements.

We produced two different ground truth simulations for

training and testing the ICP-MAPPO algorithm, while we gen-

erated unique noisy measurement realizations at each training

and testing steps. Unless stated otherwise, we conduct 40

Monte Carlo (MC) evaluations during testing. The training

process utilizes half the total time steps as the trajectory length,

i.e., Lτ = H/2, to facilitate the use of up to two mini-

batches, following guidelines in [27], [29]. We selected the

entropy and clipping coefficients of MAPPO as 0.01 and 0.2,

respectively, while the reward coefficient was set to 0.05. We

set the discount factor γ = 0.99 and the learning rate for

the Adam optimization algorithm [30] to 10−5, adhering to

conventional settings.

Regarding the NN architecture, the critic network comprises

three layers: a fully-connected (FC) linear layer with 256

neurons, a gated recurrent unit (GRU) layer with a 256 neuron

capacity, and a concluding FC linear layer. The actor network

is an MLP with two hidden linear layers containing 128 and 64

neurons, respectively, employing rectified linear unit (ReLU)

activation, and a sigmoid-activated output layer. The belief

network incorporates two bidirectional LSTM layers, each

with 256 hidden neurons and ReLU activations, a Maxout unit

producing 128 output features, and two linear layers of 64 and

32 neurons.

In our study, we compared the proposed ICP-MAPPO algo-

rithm with two key baseline algorithms. We implemented an

EKF-GNSS, meaning a non-cooperative, single-agent GNSS-

based EKF that relies solely on GNSS observations. The filter

uses in the tracking model the same measurement uncertainties

as in generation. Specifically, the Gaussian-distributed mea-

surement noise terms of the measurements have the following

covariance matricesR
(GNSS)
i,t = R

(A2A)
i,j,t = R

(A2T)
i,k,t = 4I2 m2,

For the vehicle motion model, a constant velocity model is

assumed, Gaussian-distributed driving process w
(A)
i,t , calibrated

with a standard deviation of 0.5 m/s2. We also implemented

a centralized ICP method [10], which uses the true standard

deviations for both A2A and A2F measurements. This ap-

proach shares the same motion model as the EKF-GNSS.

Notably, the ICP method assumes a fully-connected network

of agents, meaning all agents have access to and share the

same measurement data. This serves as a lower-bound on the

performances of distributed ICP solutions. Moreover, the pre-

cise usage of measurement statistics in both the generation of

scenarios and tracking processes enables an optimal evaluation

of performance by minimizing errors that could arise from

incorrect modeling.

B. Simulation Results

1) Training convergence: In the first experiment, we ver-

ify the convergence of the proposed ICP-MAPPO algorithm

along training episodes and the effect of the chosen reward

coefficient β. To this aim, in Fig. 3a, we show the mean

and 5-95 percentiles of the reward and root mean square

error (RMSE) on the vehicle position, varying the number

of training episodes. The mean and the error bounds are

computed among the trajectory and agents. From the figure,

we can notice that the mean reward passes from an initial

phase of big (> β) negative and positive improvements, i.e.,

−1 and +1, to a convergence phase after about 250 episodes.

To better explain this behaviour, we also report in Fig. 3b the

derivative among timesteps of the MSE on the position (i.e.,

squared RMSE of the orange line in Fig. 3a). Note that the

convergence happens when the derivative MSE falls below

the β = 0.05 value, highlighted with a red line. Indeed, β
physically translates to a reward function enhancement of β m

in a scenario with non-standardized state space. Therefore β
can regulate the trade-off between speed of policy convergence

and accuracy of position estimates.

2) Impact of the number of detected targets: This assess-

ment has the objective of quantifying the impact of the num-

ber of the detected targets on the positioning performances.

Intuitively, the higher the number of targets simultaneously

detected by two or more agents, the higher the number of
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Fig. 3. (a) Mean reached reward (blue line) and RMSE on the position
(orange line) varying the number of training episodes. The uncertainty areas
are the 5-95 percentiles. (b) Derivative of the MSE on the position varying
the number of training episodes (black line) and β threshold (red line).

anchors and the resulting positioning accuracy will be. Given

that the maximum number of poles detected by two vehicles

is 14, in Fig. 4, we show the RMSE on the position for

the different methods by manually setting a maximum limit

of detectable targets by each agent. From the figure, we

first notice that the EKF-GNSS represents a lower bound

on the performances when it comes to single agent stand-

alone positioning with no measurements shared among agents.

When cooperation is possible, we observe that ICP-MAPPO

outperforms the Bayesian-filtering ICP solution, reducing the

RMSE from 50 cm to about 41 cm. This improvement makes

ICP-MAPPO suitable for positioning requirements on vehicles

platooning in steady state and cooperative adaptive cruise

control where the accuracy need to be lower than 50 cm [31],

[32].

3) Impact of the number of cooperative agents: In this

last experiment, the aim is to measure the communication

efficiency obtained by ICP-MAPPO with respect to the ICP

algorithm, where all agents are selected by the centralized

implementation. Therefore, in Fig. 5, we report the cumu-

lative number of A2A connections in the network varying

the timestep of the trajectory and for different maximum
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Fig. 4. RMSE on the position varying the maximum number of detected
targets by each agent in the network.
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Fig. 5. Number of A2A connections in the network graph at each timestep, for
the ICP and the proposed ICP-MAPPO algorithms, and different maximum
connectivity in the graph.

allowed connectivity of each agent (i.e., 2, 10 and 20). We

can notice that when the number of cooperative agents is low

(e.g., 2) the ICP-MAPPO tends to select all available agents

since neighbors’ measurements can quickly reduce the GNSS

uncertainty. On the contrary, when many agents are available,

especially above 10, the cooperation becomes redundant, as

only the nearest neighbors with a high number shared targets

will have a major contribution in the positioning accuracy.

We can see that, with 10 and 20 agents, ICP-MAPPO, in

comparison to ICP, reduces the number of links of 30% and

60%, respectively.

V. CONCLUSION

In this study, we proposed a solution for CP in a distributed

network of agents that utilize detected passive targets to

enhance positioning accuracy following the ICP framework.

We introduce a generalized ICP solution modelled as a

Dec-POMDP, where the unknown agent state is estimated

through histories comprising both measurements, i.e., GNSS,

A2A and A2T observations, and A2A link activation, i.e.,

actions. The proposed ICP-MAPPO algorithm predicts the

state with belief learning and dynamically optimizes the A2A

Authorized licensed use limited to: MIT. Downloaded on February 04,2025 at 06:57:16 UTC from IEEE Xplore.  Restrictions apply. 



cooperation graph, or equivalently the communication links,

with a refined version of the MAPPO algorithm.

Through realistic simulations in a C-ITS scenario using

the CARLA environment, we demonstrate the superior per-

formance of ICP-MAPPO over conventional ICP methods

in terms of both positioning accuracy and communication

efficiency. In particular, ICP-MAPPO better exploits the coop-

erative detection of targets and actively selects the best set of

neighbors that give a relevant contribution to the positioning

accuracy. Future works could extend the action decisions

to not only A2A link selection, but also active A2A link

communication improvement such as beamforming or packet

scheduling.
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