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Abstract—Reliable location awareness is essential for the de-
velopment of new services and applications in non-terrestrial
networks (NTNs). The ability of malicious users to report false
location information poses a significant threat to the performance
of NTNs. This threat introduces the need for a flexible and
robust location verification system (LVS) that can reliably detect
malicious users. This paper proposes a single-satellite LVS
based on round-trip time and angle-of-arrival measurements. We
characterize several sources of uncertainty unique to NTNs and
examine their combined effect on positioning error. Using this
model, we approximate a likelihood function for the unknown
user position and propose a likelihood ratio decision rule for loca-
tion verification. Results display receiver operating characteristic
(ROC) curves to evaluate the LVS performance when a malicious
user is located at various distances from its reported location.
When compared with two other baseline LVSs, the proposed
system is shown to significantly improve area under the ROC
curve performance.

Index Terms—Non-terrestrial networks, network verified lo-
cation, round-trip time, angle-of-arrival, location verification
system.

I. INTRODUCTION

Location awareness in next generation (XxG) networks is
critical for optimized network performance, resource man-
agement, and many other applications [1]-[4]. In non-
terrestrial networks (NTNSs), accurate position data can en-
hance command-and-control capability in remote areas, en-
able efficient management of satellite handover, and ensure
seamless integration with terrestrial infrastructure [5]-[7]. As
cellular systems push towards ubiquitous global connectivity
enabled by NTNs, the need for awareness of user equipment
(UE) location information continues to grow [8]-[11].

The coverage areas of low earth orbit (LEO) satellites in
NTNs can extend for thousands of kilometers, thus limiting the
value of cell-ID location information immediately available to
the network [8], [12]. Malicious users can potentially tamper
with NTNs by spoofing their reported location information [9].
This can hinder law enforcement or network governance activ-
ities, introduce ambiguity regarding appropriate core network
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selection, and degrade network performance by interfering
with resource allocation within the LEO network itself [8],
[13], [14]. In the event that the coverage area of a single
satellite reaches across national boundaries, an attacker can
exploit this ambiguity by connecting to an inappropriate public
land mobile network in order to circumvent regulation or evade
law enforcement [8], [15]. These possibilities introduce the
need for a reliable NTN location verification system (LVS)
that can detect UEs reporting spoofed location information
to the network. According to the 3rd Generation Partnership
Project (3GPP), a satellite network must independently verify
UE location to within 5-10km [9].

Various methods have been proposed which depend on radio
access technology to verify UE location in NTNs. In [16],
the authors propose a time difference-of-arrival positioning
method involving multiple satellites. This method exploits
spatial diversity in satellite mega-constellations to estimate UE
location, but requires all nodes to communicate with a central
processing center, thus potentially suffering from geometric
dilution of precision (GDOP) [16], [17]. Methods based solely
on round-trip time (RTT) also require multiple measurements
with spatial diversity for a position estimate and thus can also
be affected by GDOP. In [18], the authors present a method
for localization of remote nodes based on a fusion of RTT and
Doppler measurements. However, Doppler-based techniques
are limited in their spoofing resilience because a malicious
UE has direct control over its transmitting frequency [19].

We propose a novel UE LVS based on angle-of-arrival
(AOA) and RTT measurements from a single satellite. This
method avoids the detrimental effects of GDOP by reducing
the total number of measurements required. Additionally, the
AOA measurement limits the ability of a malicious UE to
tamper with location estimation inputs. First, we enumerate
and investigate the effects of realistic sources of uncertainty on
the model, then we approximate the noise probability distribu-
tion function (PDF) using a Gaussian mixture model (GMM)
to formulate a likelihood ratio test. Finally, we compare the
proposed LVS against two baseline decision rules and evaluate
its performance.

Notations: Random variables are displayed in sans serif,
upright fonts; their realizations in serif, italic fonts. Vectors

Authorized licensed use limited to: MIT. Downloaded on February 04,2025 at 06:57:07 UTC from IEEE Xplore. Restrictions apply.
979-8-3503-7423-0/24/$31.00 ©2024 |IEEE 908



MILCOM 2024 Track 4 - Integrated Network Architecture and Systems-of-Systems

and matrices are denoted by bold lowercase and uppercase
letters, respectively. For example, a random variable and its
realization are denoted by x and x; a random vector and its
realization are denoted by x and x; a matrix is denoted by
X, respectively. Sets are denoted by calligraphic font, and a
set complements are denoted by a bar. For example, a set and
its complement are denoted by X and X. The determinant,
Euclidean norm, and transpose operations are denoted by |- |,
|-, and [-]T, respectively.

II. SYSTEM MODEL

In this section we define a noiseless system model relating
geometry, verified acceptance regions, and noiseless measure-
ments. Noise and uncertainty will be applied to the model in
Section III

A. Geometric Model for LEO Network

Consider a UE on the surface of the earth located at the
position w = [uy uy u,]T in the Earth-Centered-Earth-Fixed
(ECEF) coordinate reference frame. This UE is in the field
of view (FoV) of a single LEO satellite orbiting above and
connected to it. The LEO satellite is able to obtain RTT
and two-dimensional AOA measurements from the UE. In
addition, consider three ECEF points on the LEO orbit: the
point py = [pex Pry pt,z]T where the satellite transmits
its downlink (DL) packet for RTT measurement, the point
Pr = [Prx Pry Pro)T where the satellite receives the
uplink (UL) packet responding to the DL packet, and the
point p, = [Pax Pay pa,z]T where the satellite performs
AOA estimation on an UL signal from the UE. The instan-
taneous satellite velocities at these three points are denoted
by Uy = [Ut,x Uty Ut,z]T’ U = [Ur,x Ur,y ’UI‘7Z]T’ and
Va = [Vax Vay Va.]', respectively. Fig. 1 illustrates this
geometric reference system.

B. UE Acceptance Region

Upon request from the satellite, the UE reports its own
position estimate we = [Ucx Uc,y Uc, )" to the satellite [8],
[20]. A compliant user reports its true position estimate, while
a malicious user reports a spoofed position. This reported
position u,. defines the acceptance region A4, i.e., the region
of points on Earth’s surface near w. that are considered
acceptable locations for the true position w of a compliant
user by 3GPP or other authorities. The objective of the LVS
is to verify the null hypothesis Hy: the event that a UE’s true
position u lies within the acceptance region corresponding to
its reported position u.. The alternative hypothesis H; is the
event that the UE’s true position lies outside the acceptance
region due to a malicious UE report. These hypotheses are
summarized as

Hy:ueA ey
Hy:ueA. 2
According to 3GPP [9], A is described as a region contain-

ing all points within 5-10km from u.. In practice, however,
both A and A have arbitrary geometry based on national

RTT Ellipsoid

Fig. 1: Geometric reference system. The yellow polygons represent the nadir-
pointing satellite antenna array at different positions in orbit. In the local
coordinate reference frame of the satellite, 6 and v represent the azimuth
and off-nadir angles, respectively. Note that this figure represents a compliant
user, reporting its true position estimate.

boundaries or immediate needs of the system. For the purposes
of this work, let 4 be the set of points on Earth’s surface within
S5km from w..

C. Noiseless Measurement Model

In the absence of noise or uncertainty, the true UE position
w can be uniquely determined from the intersection of the
RTT oblate ellipsoid and AOA line, as shown in Figure 1.
The surface of the RTT ellipsoid represents all points whose
pseudoranges from the foci p; and p, sum to a constant 7, as
detailed below in (3a). The AOA line in 3D space represents
all points colinear with w and p,. We consider the North-
East-Down (NED) coordinate reference frame with respect to
the satellite, with the origin defined as the AOA measurement
point p,. The positive “North” axis points towards geodetic
north along the meridian of the satellite’s longitude A, the
positive “East” axis points towards geodetic east along the the
parallel of the satellite’s latitude ¢, and the positive “Down”
axis points downward along the ellipsoid normal [21]. In the
NED coordinate reference frame of the satellite, the incident
angles of the AOA line with the antenna array plane are
denoted as the azimuth angle 6 and off-nadir angle ), as
shown in Fig. 1. Geometrically, the ellipsoid and line can be
defined by 7(u, pt, pr), 0(u, pa), and ¥ (u, p,), which satisfy
the following relations:

) = lpe = ull + Iy = wl

T(“’) P+, Dr . (3a)
O(u,p,) = arctan (zzgﬂﬂ) G3b)
w(ua pa) = arccos <quED[3]> (30)

|u— pa

Authorized licensed use limited to: MIT. Downloaded on February 04,2025 at 06:57:07 UTC from IEEE Xplore. Restrictions apply.

909



MILCOM 2024 Track 4 - Integrated Network Architecture and Systems-of-Systems

where c¢ represents the speed of light, and ungp =
[uxn ug up]T is a transformation of u into the satellite’s
NED coordinate reference frame according to the following:

unep = R(u — pa) C)

where R is the ECEF-to-NED coordinate transformation ma-
trix given by:

—singcos A  —singsin A cos¢
R = —sin A cos A 0 N 6))
—CcoSpCcosA —cos¢sinA  —sing

In (5), ¢ and A representing the geodetic latitude and longitude,
respectively, of the satellite at point p, using the World
Geodetic System 1984 (WGS84) global datum. These can be
approximated to an arbitrary degree of precision using efficient
and well-documented numerical methods [22].

III. RTT/AOA-BASED LOCATION VERIFICATION SYSTEM

In reality, there are several independent sources of uncer-
tainty that corrupt the measurement model, which can be
described as measurement noise. This section models this
noise and applies it to the noiseless model defined above.

A. Noise Modeling

Let m be a zero-mean, uncorrelated, multivariate Gaussian
random vector in which each component represents an in-
dependent source of additive error within the measurement
model. Satellite position uncertainty is one source of error
which affects all satellite measurements. Let the uncertain
satellite position estimates be represented by

Py = Py + My (6a)
f’r =pr+m; (6b)
f’a = pa + ma (60)

where my, m,, and m, are computed as:
—Dx « (_px « Vx ))
[Pll \lpsxll o]l

+ Meoss (” x ”) )

[Pl ol

with the placeholder subscript x € {t, r, a} as appropriate,
and X denoting the vector cross product. The random variables
Mrad, Malong, and Mcroes Tepresent the satellite position error
in the radial, along-track, and cross-track directions, respec-
tively. Equation (7) ensures that myad4, Malong, and Meposs are
applied independently by using the satellite’s local and strictly
orthogonal Radial-Transverse-Normal (RTN) reference frame
[23].

The uncertain satellite position estimates can be added to
the measurement model along with the remaining additive
error sources considered in this paper. The resulting noisy
measurement vector § = [T 0 ¢]T can be described as

—Px
my = mradm + Malong (
X

T = 7(u, Py, P;) + MRTT (8a)
0 =0(u, p,) + Maz + MAOA az (8b)
¢ =1(u, P,) + Mon + MAOA on (8¢c)

Algorithm 1 Additive noise isolation

1: Generate valid p;, pr, Pa, and u, (considering realistic
orbits, timing, and FoV)

. Caleulate 0 = [7(u, pi, pr) 0w, pa) $(t,p) |7

: for i = 1 to 10° do

Generate m, a realization of the random vector m

Using m, calculate 9§ = [7 0 ¢)]T

n; < 1N—1n

: end for

: Repeat for various choices of p;, p;, pa, and u in order to
verify assumption of noise independence from parameter
values

where mgrT represents the round-trip time error, m,, and
Men represent the satellite attitude error in the azimuth and
off-nadir orientations, respectively, MaAQA 2z and MAQA on
represent the azimuth and off-nadir AOA estimation errors,
respectively.

B. Gaussian Mixture Model Approximation

As shown in (6a)—(6¢) and (8a)—(8c), some of the random
components of m are applied to parameters through the
functions 7(-), 6(-), and %(-). In order to determine the
likelihood of a given measurement based on UE position, we
start by approximating the measurement noise distribution as
purely additive. This allows us to isolate the desirable effect
of the UE position from the undesirable measurement noise
n={[n,;ngnyl":

T~ 7(u,p,pr) +n;r (9a)
6~ 0(u, pa) +ng (9b)
$ & ¥(u,pa) +ny 9c)
or equivalently:
2 ~ n(w, Pe, Pr, Pa) + N (10)

where (-) = [7(-) 8(:) ¥(-)]* is a deterministic vector of
the geometric functions of interest as described in Section II.

In order to determine the PDF of n, we perform a Monte
Carlo simulation following Algorithm 1 by approximating the
noise as purely additive. Then, we fit a multivariate GMM to
the collected data as an approximation of n. Since each of our
input noise components are Gaussian, and a learned mixture
of Gaussians can reliably approximate many arbitrary PDFs
[24], we can be reasonably confident that a GMM will be an
appropriate model for approximating n.

We use the expectation maximization (EM) algorithm to
learn the probability distribution of n as a multivariate GMM,
where K represents the number of Gaussian components [25].
We choose K such that the resulting model satisfies the
minimum Akaike information criterion (AIC). The GMM can

be represented as:
K

fa(n) =Y mro(n; pe, Zi)

k=1

(1)
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Algorithm 2 Proposed LVS performance evaluation

1: Generate valid p¢, p;, pa, and wu, (considering realistic
orbits, timing, and FoV)

2: Obtain a noisy measurement vector 73 using Equations
(8a)—(8c)

3: Choose x based on desired ROC operating point

4 U —u > Compliant UE

5: Partition FoV into .4 and A

6: Compute R(n; A)

7. if R(n; A) < x then

8 Type I error: false alarm

9

> Decide H;

: else

10: Verification of compliant UE
11: end if

12: u. < random point € A

13: Re-partition FoV into A and A
14: Compute R(7;.A)

15: if R(n;.A) > x then

16: Type II error: missed detection

> Malicious UE

> Decide Hy

17: else
18: Detection of malicious UE
19: end if

where >, m, = 1 and ¢(n; py, X)) represents the A-th
multivariate Gaussian PDF as described below:

o(n; py, X)) =

1 1 Ty—1
——ro— ——(n - X (n— 12
s (~3n - w0 T e ) ) 02)
where py, and X represent the mean vector and covariance
matrix, respectively, for the k-th Gaussian component.

C. Likelihood Ratio Testing

This formulation allows us to define the measurement likeli-
hood function, or the probability of observing a measurement
vector 1) given the true 3D user position vector w using
(10). Assuming a non-Bayesian environment without a priori
information about the probability of encountering a malicious
UE, an approximation of the likelihood function of a candidate
UE position u’ can be computed as

ZLw'sn) = fa(isu') = fu(n —n(u'))
K

= Zﬂkw(ﬁ —n(u'); pr, Zy) . (13)
k=1

According to the Neyman-Pearson lemma, the optimal way
to infer the correct set of hypothesized parameters is by
comparing their resulting ratios of the likelihood functions of
the observed measurements against a scalar threshold value y
[26]. This threshold value x can be chosen for a desired false
alarm rate, which represents a point on the receiver operating
characteristic (ROC) curve. To verify the position of the user

TABLE I
INPUT NOISE VECTOR COMPONENTS
Name Std. Dev. Description
Myad 1 [m] Satellite radial position error [29]
Malong 3 [m] Satellite along-track position error [29]
Mcross 2 [m] Satellite cross-track position error [29]
May 0.2 [deg] Satellite azimuth attitude error [30]
Mon 0.2 [deg] Satellite off-nadir attitude error [30]
MRTT 1 [ms] Round-trip time error [31], [32]
MAOA az 0.5 [deg] Azimuth AOA measurement error [33]
MAOA,on 0.5 [deg] Off-nadir AOA measurement error [33]

within a given acceptance region .4, we compare the ratio of
the likelihood function integrated over the surface areas of
interest. The threshold serves as a discriminator between the
null hypothesis of a typical honest UE (/) and the alternate
hypothesis of a malicious UE which is spoofing its location
(Hy).

:ffA,i”(u’;ﬁ)du’ Ho \
JJa Z@Wsndw @

We compare this decision rule against two baseline decision
rules: the reported likelihood threshold and the generalized
likelihood ratio test (GLRT). The reported likelihood threshold
method, as described by (15), directly compares the likelihood
of the reported position u, with a threshold value. The GLRT,
as described by (16), is an extension of the simple point
likelihood ratio to the maximum likelihood within a given
region [27].

R(n; A) (14)

Hy
By (0 ue) = £ (uc; ) 5 X (15)
1
maxqycq-L(u';n) Ho
2

Bay(n; A) =

- : (16)
max,, .z -Z(u';n) X

The decision rules described by (14)-(16) are compared
based on ROC curves for different values of . The steps
for evaluating the performance of these decision systems are
summarized in Algorithm 2.

IV. NUMERICAL RESULTS

For the analysis and simulation in this paper, we consider
the BLUEWALKER 3 satellite with an approximate orbital
height of 500km and a FoV of (7 x 10%)km? [28]. We use
the WGS84 ellipsoidal model of earth. Orbits are referenced
from publicly-available Two-Line-Element (TLE) files and
simulated in MATLAB®) using the SGP4 orbit propagator.

A. Noise Modeling

The random scalar components of the input noise vector
m and their standard deviations are summarized in Table I
Performing the Monte Carlo simulation as detailed in Algo-
rithm 1 and passing the resulting data points of n to the EM
algorithm consistently resulted in a minimum AIC of K = 1.
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Fig. 2: Overall receiver operating characteristic curve with varying x using
5-25km spoofing distances.

This implies that n can be most accurately approximated as
a Gaussian in three dimensions as shown below

fa(n) = o(n;p, X).

This is due to the fact that ||m¢|| < ||p¢]], ||m;]] < ||p:]l
and ||m,|| < ||pa||, therefore it is appropriate to model their
effects on 7(-), 6(-), and ¢ (-) as a perturbation using the first-
order Taylor approximation resulting in

ng ~ mtT aT(uvptapr) + m;f aT(u’p‘wpr)
8pt apr
00 a
mg ( (U7p )) + Mz + MAOA ,az
Opa

T (W(u,pa)

n3 ~ mg, ap
a

a7)

) + mgTT

Q

Ny

) + Mo + MAOA,on -

Ultimately, this Taylor approximation simplifies to a
weighted sum of independent scalar Gaussian noise distribu-
tions. Although there is a slight dependence on u and the other
parameters in the model, this was verified to be negligible
via simulation. We placed UEs at various locations distributed
throughout the satellite FoV and verified a negligible change
in the approximated noise model. The resulting random noise
vector can clearly be approximated using a single multivariate
Gaussian PDF.

B. LVS Performance Evaluation

We evaluated the performance of the presented noise model
approximation by generating a true user position and noisy
measurement vector 77 as detailed in (8a)-(8c). For each
measurement, we simulated a compliant UE which reported
its true location, and a malicious UE which reported a random
position outside the acceptance region. Repeating the process
outlined in Algorithm 2 many times, we estimated the Type I
(false alarm) and Type II (missed detection) error probabilities
for various threshold values using each decision rule. The
overall ROC curves for the three decision rules are shown

0.9

Detection probability
Z
oo

o
%
=N

= Q= Proposed Method (5-15 km)
= %= GLRT (5-15 km)

0.84 4 / Reported Likelihood (5-15 km) | 7
d » ==6— Proposed Method (15-25 km)
0.82 =—#=—= GLRT (15-25 km) B
! R Reported Likelihood (15-25 km)
ogb L o s T ‘ ‘ ‘ ‘ ‘ ‘
0 0.1 02 03 04 05 06 07 08 09 1

False alarm probability

Fig. 3: Comparison of ROC curves at different spoofing distances. Dashed
lines represent close spoofing distances (5-15km) and solid lines represent
far spoofing distances (15-25km).

in Fig. 2, varying x € [0, c0). We compare the performance
of the proposed method R(n;.A), as described in (14), with
both baseline strategies By (n; u.) and Ba(n; A), as described
in (15)-(16).

As the likelihood function and acceptance region change
based on the malicious UE’s reported location, we evaluated
the performance of the LVS at different “spoofing distances”
||eec —u||. Fig. 3 shows the LVS performance at close spoofing
distances (between 5 km and 15 km) and far spoofing distances
(between 15km and 25 km). Finally, Fig. 4 compares the area
under the ROC curve (AUC) for each decision rule when the
spoofing distance is 5-15km, 15-25km, or randomly chosen.
The AUC provides a generalized performance metric ranging
between 0 and 1 for a decision system over all thresholds, and
it is calculated by integrating the ROC curve. Note that the
LVS consistently detected any malicious users beyond 25 km
from their reported positions, so the ROC curve for distances
greater than 25 km is trivial. The most significant improvement
in AUC is observed at close spoofing distances between 5-
15km. As shown in Fig. 4, the proposed LVS outperforms
the GLRT decision rule by 19.3% and the reported likelihood
decision rule by 35.4%. On average, the proposed integrated
likelihood ratio decision rule outperforms the GLRT AUC by
9.6% and the reported likelihood AUC by 12.0%.

V. CONCLUSION

This paper proposes a reliable likelihood-based LVS for
NTNs in xG networks. The system fuses RTT and AOA
measurements from a single satellite into an integrated like-
lihood ratio decision rule. We consider several uncertainty
sources in the NTN scenario and approximate their effects
with a GMM. We implemented a hypothesis test for detecting
spoofed location information by exploiting AOA and RTT in-
formation. Through simulation, we analyzed the performance
of the LVS using the derived noise model when the true error
followed the more general noise model. For the input error
distribution assumed in this paper, choosing the GMM with the
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Fig. 4: AUC performance of the proposed LVS at different spoofing distances.
The proposed integrated likelihood ratio strategy is compared against two
baseline decision rules, as displayed in Figs. 2 and 3.

minimum AIC consistently resulted in a single Gaussian noise
distribution. This noise model was able to consistently dis-
criminate between legitimate and malicious UEs. However, the
framework can be easily extended to an arbitrary uncertainty
distribution and acceptance region geometry using empirical
data. For many input distributions, a GMM can accurately
describe the scenario of a given satellite constellation without
significantly increasing the complexity of the overall model.
By enabling NTN network verified location, this LVS can
help ensure the security of global cellular coverage using LEO
constellations.
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