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Abstract—Sensing is essential to enable civil, industrial, and
military applications that require situational awareness. Simul-
taneous tracking and identification of heterogeneous device-
free targets (e.g., humans, robots, and vehicles) can provide
information superiority for different types of operations and
surveillance tasks. This paper presents a framework for tracking
and identification of multiple device-free targets based on re-
flected radiofrequency signals. The proposed framework consists
of (i) clutter mitigation and target detection relying on the
estimated clutter intensity distribution in the environment; (ii)
multitarget tracking relying on probabilistic data association;
and (iii) neural network-based classification for target identifi-
cation relying on time-domain representations of micro–Doppler
signatures generated by target movements. We performed an
experimentation, employing an frequency modulated continuous
wave multiple-input–multiple-output radar at mmWaves, which
validates the proposed framework. The experimental results, in
terms of tracking and identification accuracies, show the benefits
of using the proposed framework.

Index Terms—Tracking, classification, data association, neural
network, MIMO radar.

I. INTRODUCTION

Sensing via reflected radiofrequency (RF) signals is a key
enabler for emerging civil, industrial, and military applica-
tions, including human monitoring, factory of the future,
and smart surveillance [1]–[5]. While several applications
require positional information of connected targets [6]–[9],
the 3rd Generation Partnership Project (3GPP) has recently
proposed use cases regarding localization and identification
of unconnected (i.e., device-free) targets in the Release 19
[10]–[12]. However, to achieve accurate sensing from samples
of reflected RF signals is challenging, especially in complex
wireless environments characterized by multipath propagation
and clutter conditions [13]–[15].

Tracking and classification (e.g., target identification and ac-
tivity recognition) are independent tasks that can benefit each
other. Localization over time of device-free targets is typically
performed in a recursive manner, referred to as multitarget
tracking (MTT) filtering [16]–[20]. At any time instant, MTT
filtering consists of a positional prediction phase, based on
a motion model, and an update positional phase based on
the collected measurements. Therefore, the knowledge of the
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target characteristics and activity is crucial for accomplishing
a reliable prediction using a specific motion model. On the
other hand, the knowledge of the target position reduces the
classification space since some types of targets may not be
allowed and some actions have a lower probability to be
performed in a specific spatial area. In addition, tracking is
essential to collect specific signal features from each target to
use for target identification.

Multiple-input–multiple-output (MIMO) radars operating at
millimeter waves (mmWaves) are effective for sensing based
on reflected RF signals [21]–[23]. In particular, frequency
modulated continuous wave (FMCW) MIMO radars enable
the collection of accurate measurements to provide positional
information and classification analytics. The use of probabilis-
tic frameworks to perform MTT enables operation in complex
wireless environments where measurements may be affected
by clutter and multipath propagation, as well as managing
measurements generated by close targets with overlapping
trajectories. Neural networks (NNs) are promising to perform
target identification based on features of reflected RF signals
[24]–[26]. By iteratively updating the model parameters during
the learning phase, NNs are able to recognize the most signifi-
cant identification features from an input data. Then, NN-based
approaches allow to achieve high accuracy target identification
without requiring a mathematical characterization of the wire-
less propagation, which is challenging, especially in scenarios
characterized by clutter and several scatterers.

The goal of this paper is to develop a tractable framework
for tracking and identification of heterogeneous targets via a
single FMCW MIMO radar operating at mmWaves. The key
idea is to exploit positional information for extracting the time-
domain representation of a Doppler signature from reflected
chirp signals to exploit for recognizing target characteristics
and activities. This paper presents an amenable processing
framework for simultaneous tracking and identification involv-
ing (i) clutter mitigation and target detection relying on the
offline learning of the environmental clutter intensity distri-
bution; (ii) MTT via probabilistic processing; and (iii) NN-
based classification of the time-domain representation for
Doppler signatures. The key contributions of the paper can
be summarized as follows:
• design of a clutter mitigation and target detection ap-

proach based on offline learning of the clutter distribution;
• development of a computationally efficient framework to

track and identify heterogeneous device-free targets; and
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• quantification of the proposed framework performance
based on experimentation in an industrial environment.

We validate the proposed framework using measurements
gathered in an industrial environment affected by heavy clutter
and severe multipath, employing a single FMCW MIMO
radar operating at mmWaves. The MTT accuracy is quantified
using the generalized optimal subpattern assignment (GOSPA)
metric, while classification in terms of target identification
accuracy.

Notations: Random variables are displayed in sans serif,
upright fonts; their realizations in serif, italic fonts. Vectors
and matrices are denoted by bold lowercase and uppercase
letters, respectively. For example, a random variable and its
realization are denoted by x and x; a random vector and
its realization are denoted by x and x; a random matrix
and its realization are denoted by X and X , respectively.
Sets and random sets are denoted by upright sans serif and
calligraphic font, respectively. For example, a random set and
its realization are denoted by X and X , respectively. The m-
by-m identity matrix is denoted by Im. The function fx|y(x|y)
and, for brevity when possible, f(x|y) denote the probability
distribution function (PDF) of x conditioned on y = y. The
function φ

(
x;µ,Σ

)
denotes the PDF of a Gaussian random

vector x with mean µ and covariance matrix Σ. Integrals are
over the entire space of the integration variable.

II. SYSTEM MODEL

At each discrete time instant k, consider a random number
Nk of targets, which can appear, disappear, and move freely.
The k-th target is described by its positional state x

(i)
k ∈ Rnx ,

with i ∈ {1, 2, . . . , Nk} for a realization Nk of Nk. The target
positional state x

(i)
k consists of parameters such as position,

velocity, and acceleration. The target class is denoted by c
(i)
k ∈

Ct, where Ct is the set of all possible identity classes. Positional
states and classes of tracked targets are denoted by the mul-
titarget positional state xk =

[
x
(1)T
k , x

(2)T
k , . . . , x

(Nk)T
k

]T
and

multitarget class ck =
[
c
(1)
k , c

(2)
k , . . . , c

(Nk)
k

]T
, respectively.

Consider Mk measurements obtained from sensors at the
current time k. Each measurement z

(j)
k ∈ Rmz , with j ∈

{1, 2, . . . ,Mk} for a realization Mk of Mk, contains positional
information to be employed as input for the MTT filtering.
The measurement vector zk =

[
z
(1)T
k , z

(2)T
k , . . . , z

(Mk)T
k

]T
contains all the detected measurements, including false alarms.
In this work, we consider that: (i) all the measurements are
independent of each other; (ii) a measurement is generated by
at most one target; and (iii) a target can generate at most one
measurement. In the remaining of this section, we describe the
signal processing techniques, including clutter mitigation and
target detection methods, for collecting a set of measurements
when employing a FMCW MIMO radar.

A. FMCW Radar Signal Processing
A single measurement collected via an FMCW radar con-

sists of multiple frequency modulated signals, referred to
as chirp signals. The reflected chirp signals contain con-
text information, including the time-domain representation of

micro-Doppler shifts generated by the target movements. A
time-domain sequence encapsulating the micro-Doppler signal
features generated by the target activity is promising to per-
form classification. In fact, movements and activities generate
specific sets of micro-Doppler shifts, which are referred to as
Doppler signatures [27], [28]. The time-domain representation
of a Doppler signature contains information regarding the
target dynamics preserving time correlation. Compared to
conventional classification features, such as radar cross section
(RCS) and target velocity, the time-domain analysis of Doppler
signatures allows to characterize even the micro-movements
performed by a specific target and their correlations over time.

Consider an FMCW MIMO radar transmitting linear chirps,
i.e., sinusoidal signals with frequencies increasing linearly
from fm to fM = fm + B over time, where B is the signal
bandwidth. The frequency of linear chirp signals increases in
a time Tc, referred to as chirp duration, thus with a slope
S = B/Tc. A measurement via FMCW MIMO radar consists
of Nc > 1 chirp signals, each transmitted every Tc seconds.
The chirp signal echoes after multipath propagation and target
reflections can be collected at the receiver and then processed
to obtain dynamics of the reflecting targets. The n-th received
chirp at each antenna can be written as

s
(n)
R (t) = A

(n)
R cos

(
2πfm(tn − td) + πS(tn − td)

2
)

(1)

where A
(n)
R is the n-th signal amplitude, tn = t − nTc,

and td is a time delay representing the time-of-flight (TOF).
Specifically, the time delay is td = 2(r + vt)/c, where r and
v are the range and velocity of the scatterer that reflected the
signal and c is the propagation speed of electromagnetic waves.

At the receiver of the FMCW radar, the transmitted and
received waveforms are multiplied using a mixer and their
product is then filtered using a low-pass filter (LPF). The
resulting signal is referred to as intermediate frequency (IF)
signal and represents the difference of instantaneous frequency
between the transmitted and received waveforms. The IF signal
obtained by the transmission of the n-th chirp is given by

s
(n)
IF (t) =

A
(n)
R

2
cos

(
2π(fptn + fDTc)

)
(2)

where fp = 2B r/cTc and fD = 2fm v/c. Each IF signal can
be sampled with period Ts in Ns samples, while the entire IF
signal sequence with period Tc in Nc samples, i.e., one for
each transmitted chirp. The sampling processes with periods
Ts and Tc are referred to as fast sampling (FS) and slow
sampling (SS), respectively.

In MIMO radars, multiple antennas receive the same re-
flected signal with a time delay that depends on the angle-of-
arrival (AOA) of the waveform. Therefore, samples of the IF
signal sequence obtained via FS and SS can be arranged in a
3-D tensor, referred to as radar data cube, in which FS and
SS represent the FS and SS dimensions, respectively, while
the third dimension is due to multiple antennas.

By processing the radar data cube via discrete Fourier
transform (DFT) we obtain the range-Doppler-angle (RDA)
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map, which consists of energy bins for each frequency shift
considered over FS, SS, and angular dimension. Let f̃f , f̃s,
and f̃a denote the frequency shifts over FS, SS, and angular
dimension, respectively. The range is determined as r̂ =
c Tc f̃f/(2B), velocity as v̂=c f̃s/(2fm), and AOA θ̂ such that
sin(θ̂)=c f̃a/(2πd fm), where d is the shift between antennas.

The marginalization of the RDA map with respect to the
angular dimension provides a range-velocity representation of
the environment, referred to as range-Doppler (RD) map. The
RD map is promising to distinguish between energy bins (i.e.,
frequency shifts) generated by the target presence from those
produced by clutter and multipath propagation.

B. Clutter Mitigation and Target Detection

In cluttered environments, target detection is challenging
due to RD maps corrupted by signal distortion and noise. The
proposed technique for clutter mitigation consists of an offline
and an online phase. In the offline phase, the environmental
clutter intensity distribution is estimated by the collection of
measurements with no target in the area of interest. For each
point with coordinate p in the RD or RDA map, a specific
threshold is determined based on the clutter distribution pre-
viously estimated.1 In the online phase, RD map elements are
compared with the designed thresholds. If the magnitude of
the RD map element under test is below the corresponding
threshold, its value is forced to zero, otherwise is kept.

The threshold for a point at the coordinate p is defined
by considering as Gaussian distributed its noise power np,
i.e., np ∼ φ

(
np; n̄p, σ

2
p

)
. The distribution parameters can

be estimated during the offline learning by the collection
of multiple noisy measurements without any target in the
monitored area. The threshold ξp for a point at the coordinate
p is given by

ξp = n̄p + αp σp (3)

where αp ∈ R+ tunes the false alarm and misdetection
probabilities. A higher αp reduces the false alarm probability,
while increases the number of misdetections, and vice-versa.

The high range and velocity resolutions of mmWave FMCW
radars and the noise introduced by multipath propagation
generate a representation of each detected target as an extended
object, i.e., characterized by a set of range-velocity coordinates
corresponding to an over threshold magnitudes. The DBSCAN
algorithm allows to group such coordinates in clusters by
leveraging their density in the RD map [29]. A weighted
mean of the cluster elements provides a single-value estimate,
referred to as centroid, which consists of a range-velocity
coordinate. In particular, by denoting as Ωj the j-th cluster
of coordinates, with j ∈ {1, 2, . . . ,M} and M representing
the number of clusters obtained by computing the DBSCAN
algorithm, the centroid µj is given by

µj =

∑
p∈Ωj

Pp p∑
p∈Ωj

Pp
(4)

1For notational convenience, we denote p ∈ R2 a RD map coordinate and
a p ∈ R3 RDA map coordinate.

where p denotes a range-velocity coordinate and Pp is the
magnitude of the corresponding energy bin in the RD map.
The centroid µj is the estimated range-velocity coordinate for
representing the cluster j. At a range-velocity coordinate µj ,
the reflection AOA is obtained by considering the angle with
highest magnitude in the RDA map.

The knowledge of the target positional states at the previous
time instant is exploited to further reduce the number of
misdetections and false alarms. From the RDA map, a sub-
tensor for each previously estimated positional state can be
extracted and, then, processed via the DBSCAN algorithm
to enlarge the set of detections. The Mk measurements are
composed by the union of centroids collected evaluating both
the RD map and the RDA map sub-tensors. Therefore, the set
of measurements consist of range-velocity-AOA coordinates,
which can be used as input of the MTT filtering.

III. TRACKING AND CLASSIFICATION FRAMEWORK

This section presents the proposed framework to perform
tracking and classification of device-free targets.

A. Tracking of Multiple Targets
Tracking of multiple device-free targets requires data asso-

ciation, which is the combinatorial problem of determining
(i) which target generates a given measurement, (ii) if the
measurement is due to false alarm, and (iii) if a target is mis-
detected. Let θ(i)k be the data association variable denoting the
assignment of the measurement j, with j ∈ {1, 2, . . . ,Mk},
to the target i, with i ∈ {1, 2, . . . , Nk}, at the time instant k,
as follows

θ
(i)
k =

{
j if target i is associated to a measurement j
0 if target i is associated to no measurement.

(5)

In the presence of multiple targets, we define the multitarget

data association vector θk =
[
θ
(1)
k , θ

(2)
k , . . . , θ

(Nk)
k

]T
provid-

ing the measurement-to-target associations for all the tracked
targets. In particular, the multitarget data association vector is
such that θk ∈ Θk, where Θk is the set containing all possible
vectors of valid multitarget data associations. A valid multi-
target data association requires that (i) each target is either
associated to a measurement or misdetected and (ii) any pair
of detected targets is not associated to the same measurement.
To compute data association and MTT filtering analytically,
we exploit the Kalman filter (KF) solution considering linear
and Gaussian system models.2

Data association can be seen as an optimization problem,
where a data association probability Pa

(
θ
(i)
k

)
, for linear and

Gaussian modeling, is given by

Pa

(
θ
(i)
k

)
=


Pd

(
x
(i)
k

)
φ
(
z
(θ

(i)
k )

k ;Hkx̃
(i)
k ,Σk

)
θ
(i)
k ̸= 0

1− Pd

(
x
(i)
k

)
θ
(i)
k = 0

(6)

2For nonlinear non-Gaussian system models, computationally feasible ap-
proximate algorithms include variants of the KF such as the extended KF and
the unscented KF [30]. Both the extended KF and the unscented KF are based
on the Kalman equations but perform different approximations of the system
models.
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Fig. 1. Block diagram of the presented framework for tracking and classification via single FMCW MIMO radar operating at mmWaves. In particular, lilac
blocks represent the signal processing phase, orange blocks the clutter mitigation and detection phase, and blue blocks the tracking and classification phase.

where Pd(·) is the detection probability and Hk is the linear
measurement model, while x̃

(i)
k and Σk are the positional pre-

diction and the innovation covariance of the KF, respectively.
The data association costs

li,j = −Pa

(
θ
(i)
k = j

)
(7)

can be arranged in a matrix L, where rows represent targets
and columns represent both measurements and misdetections.
By processing L using the Murty’s algorithm [31], we define
Θ̂k ⊆ Θk representing the set of the Q-best data association
hypotheses obtained evaluating the data association costs.

The joint probabilistic data association (JPDA) algorithm
leverages a soft-decision approach for data association by
accounting for the uncertainty in matching measurements with
tracked targets [32]. In particular, JPDA assigns an association
score β

(i,j)
k to each possible measurement-to-target associa-

tion, based on how the measurement aligns with the predicted
positional state of the target. The association score can be
calculated as

β
(i,j)
k =

∑
θk∈

{
θk∈Θ̂k, θ

(i)
k =j

}Pa

(
θ
(i)
k

)
(8)

where j ∈ {0, 1, . . . ,Mk}. Based on the association score, the
distribution of the multitarget positional state for independent
targets is given by

f(xk|z1:k) =
Nk∏
i=1

Mk∑
j=0

β
(i,j)
k f

(
x
(i)
k |z(j)

k

)
. (9)

where f
(
x
(i)
k |z(j)

k

)
can be calculated employing the KF for

linear and Gaussian models.
Appearing and disappearing targets require the initialization

and the deletion of new and existing tracks, respectively. Track
initialization is performed from a sequence of measurements
collected over time as follows. At the first time instant, all
the measurements are considered as potential tracks, i.e., each
generates a track hypothesis. At the next time instants consider
the greediest data association hypothesis. The measurements
that are not assigned to any existing track are either associated

to a track hypothesis or considered as new potential tracks.
Finally, if a track hypothesis achieves a length of K measure-
ments is validated as real track and processed via the JPDA
algorithm. Given that the positional states are represented
using a Gaussian density, the covariance matrix serves as a
crucial indicator of the plausibility of the track hypothesis. In
particular, until the trace of the covariance matrix is below
a deleter threshold, the hypothesis is valid. By adjusting the
deleter threshold, the same approach can be employed to delete
existing tracks processed via the JPDA algorithm.

B. Identification of Multiple Targets
Identification requires the extraction of specific signal fea-

tures for each target tracked. In particular, MTT filtering
provides range-angle coordinates, which can be exploited to
determine specific classification analytics for each target from
reflected chirp signals. Consider a collected radar data cube,
by applying the DFT to the FS and angular dimensions, we
obtain range-angle coordinates, each characterized by the Nc

samples of the SS dimension. Such samples provide a time–
domain representation of the micro-Doppler shifts generated
by movements at a specific range-angle coordinate.

We consider a classification problem for target identification
taking as input a sequence of WNc time-domain samples
collected by exploiting target positions estimated via MTT.
In particular, the parameter W ∈ N defines the duration of the
observation window in which the classification analytics are
collected. The entire sequence of WNc samples is organized as
a linear array to preserve the correlations over time. Increasing
W enables performing a more accurate characterization of the
target motion.

IV. EXPERIMENTATION IN INDUSTRIAL ENVIRONMENT

The proposed framework to perform tracking and identifica-
tion of multiple targets is validated via experimentation using
a mmWave MIMO radar in the pilot line of the BI-REX, an
Italian competence center for Industry 4.0.

A. System setting
The considered experimentation area is 8.3 × 6.5 [m2] and

presents many scatterers, such as industrial machines, tables,
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Radar

Industrial
vehicle

Human
walking

Real-time tracking
and identification

Fig. 2. Experimentation area in the pilot line of the BI-REX with a human
walking and an industrial vehicle moving in the monitored area.

and other assets. Fig. 2 shows the scenario during the ex-
perimentation. The sensor employed to perform both tracking
and identification is an off-the-shelf FMCW MIMO radar with
2 transmitting and 16 receiving antennas forming a linear
array. The transmitted signals are linear chirps operating in the
frequency range 76 − 77GHz with a duration Tc = 120µs.
Each radar measurement consists in transmitting 128 chirp
signals and collecting echoes generated by reflections at all
the receiving antennas. Each reflected signal is composed by
512 samples. The entire chirp sequence is collected every 0.1 s
by multiple antennas and compose the radar data cube.

The collected radar data cubes are processed via DFT to
obtain RD and RDA maps. All the elements in the RD and
RDA maps are compared with a specific threshold to detect the
target presence. The thresholds are defined during the offline
phase, in which 1000 measurements are collected with no tar-
get in the environment. The processing of such measurements
produces RD and RDA maps, that are exploited to estimate
the Gaussian distribution parameters that best approximate the
noise distribution at each range-Doppler and range-Doppler-
angle coordinate. Then, for a point at the coordinate p in the
RD and RDA maps, the threshold ξp is designed according to
equation (3) by using the estimated mean n̄p and standard
deviation σp, together with a scaling parameter αp = 10.
The over threshold elements of the RD map are clustered
by employing the DBSCAN algorithm, with a neighborhood
searching radius ϵ = 0.05 and considering clusters with a min-
imum of 2 elements. Centroids are obtained by equation (4)
and compose the set of positional measurements.

B. Multitarget tracking

Target positional states and positional measurements are 4-
dimensional vectors (i.e., nx = mz = 4), each one character-
ized by a 2D position and a 2D velocity. Track initialization
requires that a track hypothesis achieves a length of K = 3
measurements, while both track hypotheses and confirmed
tracks are deleted for values of the corresponding covariance
matrix trace above ξd = 2.5 . Data association is performed
considering a gating region ξg = 0.5m around the predicted
positional state of each target. In particular, the target posi-
tional state prediction is performed considering the constant

0 0.2 0.4 0.6 0.8 1 1.2

0.2

0.4

0.6

0.8

1
95%

75%

eth [m]

P̃
(e

th
)

Fig. 3. ECDF of the tracking error evaluated using the GOSPA metric.

velocity model, which assumes no velocity variations in the
interval between two measurements. The linear measurement
model employed is the identity matrix, i.e., Hk = I4.

The tracking accuracy is quantified using the GOSPA metric
of order p = 1, cut off c = ξg, and normalization term
α = 2 [33]. In particular, localization error is evaluated
computing the Euclidean distance and each misdetection in-
troduces a penalty of 0.25m in the GOSPA metric. When
a misdetection occurs the range-angle coordinate employed
for collecting classification analytics is given by the predicted
positional state. The target position is estimated every 0.1 s,
while the target class every 2 s aiming to determine if the target
is a human or an industrial vehicle.

Fig 3 shows the empirical cumulative distribution function
(ECDF) of the tracking error based on the GOSPA metric,
which accounts both localization accuracy and misdetections.
The proposed framework has been validated monitoring an
area with moving humans and industrial vehicles by collecting
1200 measurements to cover a time frame of 120 s. The 99% of
the measurements considers the presence of at least of 1 target,
while the 85% of exactly 3 targets. At the 95th percentile,
the presented approach for detection and tracking provides
a localization error of 0.83m, while, at the 75th percentile,
the error is reduced to 0.68m. The average number of false-
alarms per measurement is 1.23 . In particular, for 98% of the
measurements at most 3 false-alarms are collected.

C. Multitarget identification

Classification is performed employing a convolutional neu-
ral network (CNN), which inputs W = 20 sequences of
Nc = 128 samples collected relying on the estimated target po-
sitions and organized as a linear array for preserving the time
correlations. The CNN architecture employed for processing
the 1D time series consist of 6 layers: (i) 1D convolutional
input layer with 128 filters and kernel size of 2; (ii) max
pooling layer with pool size of 2; (iii) 1D convolutional layer
with 32 filters and kernel size of 2; (iv) max pooling layer with
pool size of 2; (v) a fully connected layer with 16 units; and
(vi) the output layer. The activation function in the CNN inner
layers is the rectified linear unit function, while the output
layer employs the sigmoid function. Training is performed
employing the categorical cross–entropy as empirical loss
function and the Adam optimizer with a learning rate of 10−3.
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The training set consists of 1800 time series collected in
the same experimentation environment, but with a different
deployment of the industrial machines. The 1800 instances
equally represent humans and industrial vehicles and are
divided in 70% of training and 30% of validation. We apply
data augmentation on the training set by performing a cyclic
permutation of each training instance.

Identification has been performed for 137 time-domain
sequences. The achieved identification accuracy during the
testing phase is 92%. Wrong classification occurs according to
misdetections and significative localization errors. In fact, the
averaged localization error of sequences leading to a wrong
classification is 30% greater than that of sequences producing
a correct classification.

V. CONCLUSION

This paper presents a framework for simultaneous tracking
and identification of device-free targets based on samples of re-
flected signals at mmWaves. The proposed framework employs
tracking information to gather time-domain representation of
micro-Doppler signatures specific for each target that are used
as input of a CNN to perform target identification. The experi-
mental results employing an FMCW MIMO radar validate the
developed framework in an industrial environment showing a
localization error below 0.83m for 95% of the occasions and
a target identification accuracy of 92%. The effectiveness of
the proposed approach relies on the statistical characterization
of the environmental clutter distribution to obtain reliable
measurements for both tracking and identification even in
cluttered environments. The proposed framework paves the
way for the amenable implementation and deployment of
sensing-based services in next-generation wireless networks.
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