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Travel Demand Modeling and Estimation
for High-Dimensional Mobility

Jeongyun Kim , Member, IEEE, Andrea Conti , Fellow, IEEE, and Moe Z. Win , Fellow, IEEE

Abstract—The massive amount of data related to spatiotemporal
mobility offers new opportunities to understand human mobility
with applications in various sectors, including transportation, lo-
gistics, and safety. However, the increase in the volume and in
the dimension of mobility data makes it challenging to retrieve
important information and critical features of spatiotemporal mo-
bility. This paper develops a method to estimate probabilistic occur-
rences of travel demands considering interactions between origin,
destination, and departure time. First, we reveal the important
features in the complex structure of mobility data and identify
mobility patterns. Then, we derive a data-driven model, accounting
for mobility patterns, to estimate and predict travel demands. We
quantify the accuracy of the proposed method for a case study using
both New York city yellow taxi trip data and for-hire vehicles trip
data over the entire city. Results show the accuracy of the proposed
method compared to existing approaches.

Index Terms—Intelligent transportation systems, mobility,
spatiotemporal pattern, tensor decomposition, travel demand.

I. INTRODUCTION

MOBILITY information is essential for several applica-
tions, including network management [1], [2], smart

cities [3], [4], intelligent transportation systems [5], [6], and au-
tonomous vehicles [7], [8], [9]. A transportation system leverag-
ing rich mobility information can be a catalyst for improving the
quality of life while ensuring efficiency and sustainability [10].
Over the past decade, large quantities of human movement data,
such as smart phone data [11], [12], taxi trip data [13], and smart
card data [14], [15] have become available. Many researchers
have utilized the data to understand human mobility, evaluate
transportation systems, and provide ways to improve human
mobility. The large quantities of movement data have helped
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researchers understand spatial-temporal structure of cities in
terms of human mobility patterns. At the same time, as data
resolution and the number of data attributes, including origin,
destination, passenger type, and departure time, have increased,
it has become more difficult to uncover major mobility pat-
terns and comprehend the interactions between different data
attributes [16]. Further, predicting the high-dimensional urban
travel demands is challenging [17] because of complicated dy-
namics and high computational complexity.

Various travel demand models have been proposed, includ-
ing the four-step models, activity-based models, and statistical
models [18], [19]. These models provide essential information
for decision making in transport service design, route planning,
and fleet management [20], [21]. As the knowledge of travel
demand in terms of origin and destination has become important
to plan efficient routes for mobility services, origin-destination
(OD) estimation has been actively discussed in the literature.
In many cases, OD demand has been estimated in the form
of an OD matrix whose row and column indices stand for
origin and destination. autoregressive integrated moving average
(ARIMA) [22], [23], Poisson models [23], least-square mod-
els [24], and Kalman-filter [25] are well-known approaches for
estimating time-series travel demand using historical data.

Recently, deep learning methods have been proven effective
in discovering human mobility patterns and modeling high-
dimensional travel demand [26], [27], [28], [29], [30]. This suc-
cess is due to their ability to uncover correlations between travel
demand and contextual data so that these deep learning methods
can enhance the modeling accuracy. However, leveraging this
advantage depends on the accessibility to diverse contextual
data, which can reduce the model generality of the model.
Additionally, computational load must be carefully considered
when using deep learning-based approaches.

Dimensionality reduction approaches have been utilized to
model high-dimensional travel demands [31], [32], [33]. In par-
ticular, decomposition approaches have been applied to discover
low-order substructures that capture complex dynamics of travel
demands and the dependencies among the substructures [34],
[35], [36]. As travel demands can be subject to periodic changes
and display strong spatiotemporal correlations, those from dif-
ferent locations and times frequently share similar patterns [37].
In a two-dimensional setting, trip data have been transformed
into a spatial unit × time matrix, and principal component
analysis and non-negative matrix factorization have been used
to identify spatial and temporal patterns in the matrix [38], [39].
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In a higher-dimensional setting, more attributes such as origin,
destination, day, and passenger type have been considered.
The principal substructures of mobility data and the complex
dependency between the attributes have been revealed using a
non-negative Tucker decomposition model and a non-negative
CANDECOMP/PARAFAC (CP) decomposition model [40],
[41], [42].

Tensor decomposition approaches have been used to pre-
dict future travel demand [43]. Several prediction studies have
applied time-series prediction models to the low-dimensional
principal patterns [43], [44], [45], [46], [47]. In those works,
temporal mobility patterns are first extracted as matrices, and
the future temporal mobility patterns are estimated by applying
ARIMA [46] and long short-term memory (LSTM) [47]. How-
ever, the majority of the OD demand prediction studies over the
past decades have focused more on estimating the quantity of
travel demands and less on the probabilistic characterization of
those demands.

Reliability and resilience become issues in many mobility
services, so a more comprehensive understanding of demand
stochasticity is required for designing robust transportation sys-
tems [48]. Travel demand is inherently variable and uncertain
due to human behavior. Therefore, a stochastic approach is ex-
pected to provide more reliable transportation strategies. In [49],
[50], [51], stochastic travel demand has been estimated using
specific statistical models. In [52], [53], domain knowledge
regarding travelers’ routing behaviors and the physical network
topology have been incorporated in the estimation problems.
While demand estimation has been extensively studied, exist-
ing literature lacks exploration of mobility pattern extraction.
Meanwhile, in mobility demand modeling, mobility patterns and
their interactions have been identified using a multi-dimensional
probabilistic factorization [16]. In [54], to improve the inter-
pretability of transit trip data, a trip activity attribute was con-
sidered in mobility pattern modeling.

In travel demand prediction, there is a lack of research in the
field of probabilistic approaches, and especially on providing
a more comprehensive understanding of demand stochasticity,
indicating the need for further investigation. Moreover, interac-
tions among mobility patterns inherently provide key informa-
tion that can reduce the computational complexity and increase
the prediction accuracy. The fundamental questions related to
inferring a mobility demand model are listed in the following.
� How can mobility patterns and their temporal interactions

be described to gain a comprehensive understanding of
demand stochasticity?

� How to leverage low-dimensional patterns to improve the
accuracy of the future travel demand prediction?

The answers to these questions enable a clear understanding
of requirements for modeling and estimating travel demands
in the face of growing complexities and volumes of mobility
data. The goal of this paper is to develop a method to estimate
probabilistic occurrences of travel demands considering inter-
actions between origin, destination, and departure time. We aim
to design an estimation algorithm to infer probabilistic mobility
patterns, allowing to reveal the complex structure inherent in the

mobility data, thus estimating future travel demands using the
probabilistic mobility patterns. We advocate the importance of
exploiting temporal interactions among OD patterns to estimate
the future demand accurately with computation efficiency.

This paper proposes a probabilistic method for travel demand
estimation.1 We determine probabilistic OD basis patterns and
temporal interactions from high-dimensional mobility data, and
use them to model uncertainties inherent in travel behaviors. We
also exploit the OD basis patterns and temporal interactions in
predicting occurrence probability of travel demand. The key
contributions of this paper are summarized in the following.
� We propose a method to estimate the travel demand distri-

bution for characterizing the spatial basis patterns and their
temporal interactions.

� We develop an efficient prediction method for future travel
demands by using the extracted spatiotemporal patterns
to achieve high prediction accuracy and high computation
efficiency.

� We apply the proposed methods to both the yellow taxi
and the for-hire vehicles trip data in New York city for
extracting mobility patterns, showing that the proposed
prediction method outperforms the existing ones.

The remainder of the paper is organized in the following:
Section II presents an approach for modeling and estimating
travel demand. Section III presents a method for predicting
future travel demand distribution. Section IV provides modeling
and estimation results using New York yellow taxi and for-hire
vehicle trip data. Finally, Section V gives our conclusions.

Notations: Random variables are displayed in sans serif,
upright fonts; their realizations in serif, italic fonts. Vectors
and matrices are denoted by bold lowercase and uppercase
letters, respectively. For example, a random variable and its
realization are denoted by x and x; a random vector and its
realization are denoted by x andx; a random matrix and its reali-
zation are denoted by X and X , respectively. Sets and random
sets are denoted by upright sans serif and calligraphic font,
respectively. For example, a random set and its realization are
denoted by X and X , respectively. The indicator function of a
setA is denoted by 1A, i.e., 1A(x) = 1 if x ∈ A and 1A(x) = 0
if x /∈ A. The transpose of X is denoted by XT.

II. ESTIMATION OF TRAVEL DEMAND PROBABILITY

DISTRIBUTION

This section presents a novel method for travel demand es-
timation. Specifically, we employ a probabilistic factorization
approach to uncover OD basis patterns and temporal interactions
among the origin basis patterns and destination basis patterns,
thus characterizing the complex mobility in high-dimensional
and large-scale trip dataset. The extracted OD basis patterns and
temporal interactions can be utilized for accurate and efficient
prediction of future trips in the following section. The framework
of the proposed approach for the travel demand modeling is
described in Fig. 1.

1A part of this work was presented in a conference version [33].
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Fig. 1. Framework for estimation and prediction of travel demand.

A. Probabilistic Travel Demand Model

A set of observed trip data X � {xi; i = 1, 2, . . . , n} is
composed with realizations of the independent and iden-
tically distributed (i.i.d.) random trips xi � [oi di ti]

T hav-
ing probability mass function (PMF) fx(x). The random
variables oi, di, and ti respectively represent the indices of
the origin, destination, and departure time of the i-th trip
such that oi ∈ {1, 2, . . . ,Wo}, di ∈ {1, 2, . . . ,Wd}, and ti ∈
{1, 2, . . . ,Wt}. The origin and destination are locations where
each trip begins and ends. For example, they are specific lo-
cations such as bus stops, zones, and cities. The i-th trip data
realization is expressed as

xi = [oi di ti ]
T , ∀i = 1, 2, . . . , n. (1)

The spatial and temporal probability distribution of travel de-
mand can be expressed as a Wo ×Wd ×Wt tensor V . Each
element of V is defined as

[V ]co,cd,ct = fx
([
co cd ct

]T )
(2)

where co, cd, and ct are the indices of the origin, destina-
tion, and time of V , respectively. The tensor V is com-
posed with Wt OD matrices, and each OD matrix satisfies∑Wo

co=1

∑Wd

cd=1 [V ]co,cd,ct = 1, ∀ct.
We aim to discover the probabilistic OD basis patterns inher-

ent in the trip data X together with their probabilistic temporal
interactions based on a probabilistic factorization approach. To
this end, we design a modeling method to satisfy the following
conditions for the spatial basis patterns and temporal interac-
tions: i) the sum of the elements of each spatial basis pattern and
temporal interaction is 1 and ii) each element is larger than and
equal to 0. To satisfy these conditions for achieving the desired
result, we employ a probabilistic factorization approach. This
approach allows to capture the complicated dependence and high
order interactions among origins and destinations. In addition,
the revealed OD basis patterns and the temporal interactions
are utilized in future travel demand estimation to reduce the

Fig. 2. Example of Θ(o) and Θ(d) when Wo = 4, Wd = 5, Ko = 2, and
Kd = 3.

computation load significantly, which will be discussed in the
following section.

Latent class models are applied in this paper to infer the
distribution fx(x) for establishing a connection between ob-
served multivariate categorical data and a set of latent classes.
This connection is essential to capture the interactions between
OD basis pattern. To extract meaningful patterns from high-
dimensional data, a common approach is to aggregate data into
lower-dimensional structures using categorical distribution [55],
[56]. Following this approach, the distribution fx is modeled as a
categorical distribution with a parameter Θ, i.e., gx(x;Θ) with

Θ �
[
Θ(o) Θ(d)

]
(3)

whereΘ(o) andΘ(d) denote the OD basis patterns, respectively.
Let Ko and Kd denote the numbers of origin basis patterns
and destination basis patterns, respectively, extracted from the
observed trip data X . Consequently, the matrices Θ(o) and
Θ(d) have dimensions Ko ×Wo and Kd ×Wd, respectively.
Each row of Θ(o) and Θ(d) indicates an origin pattern and
a destination pattern, respectively, representing a probability
distribution of a trip occurrence that accounts for the importance
of the locations. Specifically, the ko-th row of Θ(o) is the ko-th
origin pattern and denoted as θ

(o)
ko

, ko = 1, 2, . . . ,Ko. Each

element of θ
(o)
ko

, which is denoted as θ
(o)
co,ko

, represents how
important the co-th cell is in the ko-th origin pattern. Similarly,
θ
(d)
cdkd

is the element of θ(d)
kd

. Since each pattern is a probability

distribution, we have
∑Wo

co=1 θ
(o)
coko

= 1 and
∑Wd

cd=1 θ
(d)
cdkd

= 1.
For example, consider a set of trip data composed with four
origins and five destinations (Wo = 4 and Wd = 5). Since we
want to find macroscopic movement patterns based on the trip
data, the number of OD basis patterns is set to be smaller than
that of the origins and destinations, e.g. Ko = 2 and Kd = 3 in
Fig 2. Specifically, the number of basis patterns determines the
capacity of the model. More basis patterns can describe the trip
patterns in more detail, which may help to better fit to the data
but makes difficult to interpret the modeling result and requires
higher computation loads.

A core tensor Π is defined as temporal interaction infor-
mation among Θ(o) and Θ(d). Given that there are Ko origin
patterns and Kd destination patterns, this results in KoKd
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Fig. 3. Probabilistic travel demand modeling.

possible interactions for each time. Over Wt time instants, the
number of possible interactions is KoKdWt, and the dimension
of Π is Ko ×Kd ×Wt. For each time index ct, the proba-
bility that a trip belongs to the ko-th origin pattern and the
kd-th destination pattern is defined as πctkokd

, which satisfies∑Ko

ko=1

∑Kd

kd=1 πctkokd
= 1.

The occurrence probability of xi = xi is modeled by a pa-
rameterized function as

gx(xi;Θ) = P {xi = xi;Θ}

=

Ko∑
ko=1

Kd∑
kd=1

πtikokd
θ
(o)
oiko

θ
(d)
dikd

(4)

which depends on Θ and Π . In (4), θ(o)oiko
is the probability of

oi = oi given that oi belongs to the ko-th origin pattern, and
θ
(d)
dikd

is the probability of di = di given that di belongs to the
kd-th destination pattern. The proposed probabilistic modeling
of travel demand is described in Fig. 3. The temporal occurrence
probability of trips belonging to the ko-th origin pattern and the
kd-th destination pattern is obtained by using the ko-th origin
pattern from Θ(o), kd-th destination pattern from Θ(d), and the
corresponding temporal interactions from Π . Once we have the
patterns in Θ(o) and Θ(d) as well as their temporal interactions
in the core tensor Π , the tensor V in (2) can be obtained as

V ≈ (
Θ(o)

)T
ΠΘ(d). (5)

B. Model Inference

To find Θ that maximizes the occurrence probability of xi =
xi in (4), we estimateΘ with respect to the maximum likelihood
criterion. For tractable maximum likelihood estimation of Θ
using the expectation-maximization (EM) algorithm, we intro-
duce latent variables zi ∈ {[ko kd]

T|ko = 1, 2, . . . ,Ko, kd =
1, 2, . . . ,Kd} on the joint membership across all combinations
of the OD basis patterns. From (4), the joint probability of
xi = xi and zi = zi for all i = 1, 2, . . . , n is given by

fX,Z(X ,Z;Θ) =

n∏
i=1

Ko∏
ko=1

Kd∏
kd=1

[
πtikokd

θ
(o)
oiko

θ
(d)
dikd

]1Zo,d (zi)

(6)

where

Z � {zi : i = 1, 2, . . . , n}
Zo,d � {zi ∈ Z : zi = [ko kd]

T}.

The EM algorithm consists of two main steps: the expec-
tation step (E-step) and maximization step (M-step). The EM
algorithm first initializes Θ and Π randomly. Then, E-step
and M-step successively approximate Θ until the convergence
criterion |Θ[m] −Θ[m−1]| < ε is met, whereΘ[m] is an updated
Θ at the m-th iteration, and ε is the convergence tolerance.
� E-step: compute the expected log-likelihood ofΘ, denoted

by Q(Θ|Θ[m−1]), as follows

Q
(
Θ|Θ[m−1]) (7)

= EZ|X;Θ[m−1]

{
log fX,Z (X ,Z;Θ) |X ;Θ[m−1]

}

=
n∑

i=1

Ko∑
ko=1

Kd∑
kd=1

(
γkokd
i

)[m]

×
[
log πtikokd

+ log θ
(o)
oiko

+ log θ
(d)
dikd

]
(8)

where
(
γkokd
i

)[m]

� Ezi|xi;Θ[m−1]

{
1{zi:zi=[ko kd]T}(zi)|xi;Θ

[m−1]
}

= P

{
zi = [ko kd]

T |xi;Θ
[m−1]

}
. (9)

� M-step: update Θ given by

Θ[m] = argmax
Θ

Q(Θ|Θ[m−1])

subject to
Wo∑
co=1

θ
(o)
coko

= 1, ko = 1, 2, . . . ,Ko

Wd∑
cd=1

θ
(d)
cdkd

= 1, kd = 1, 2, . . . ,Kd.

(10)
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Algorithm 1: Inference of Θ and Π .
Require: X
Initialize: Θ[0], Π [0]

1: m← 0
2: while |Θ[m] −Θ[m−1]| > ε do
3: m← m+ 1
4: Update γkokd

i , ∀i, ko, kd using (11)
5: Update Θ[m] using (12a) and (12b)
6: Update Π [m] using (13)
7: end while

Return: Θ[m], Π [m]

In (8), γkokd
i can be updated by applying the Bayes’ theorem as

follows,

(γkokd
i )[m] =

(πtikokd
)[m−1]θ(o)oiko

θ
(d)
dikd∑Ko

k′o=1

∑Kd

k′d=1 (πtik′ok′d)
[m−1]θ(o)oik′o

θ
(d)
dik′d

(11)

where (πtikokd
)[m−1] denotes them-th updated value of πtikokd

.
Notice that the problem in (10) is convex, hence the local opti-
mum is the global optimum. For this reason, the optimal solution
for the problem can be found by using Lagrange multiplier
method, and the new value of Θ[m] is updated as

(
θ
(o)
coko

)[m]
=

∑n
i=1

∑Ko

k′o=1

∑Kd

k′d=1 1{(oi,k′o):oi=co,k′o=ko}(oi, k
′
o) (γ

k′ok′d
i )[m]

∑n
i=1

∑Ko

k′o=1

∑Kd

k′d=1 1{k′o:k′o=ko}(k′o) (γ
k′ok′d
i )[m]

(12a)
(
θ
(d)
cdkd

)[m]
=

∑n
i=1

∑Ko

k′o=1

∑Kd

k′d=1 1{(di,k′d):di=cd,k′d=kd}(di, k
′
d) (γ

k′ok′d
i )[m]

∑n
i=1

∑Ko

k′o=1

∑Kd

k′d=1 1{k′d:k′d=kd}(k
′
d) (γ

k′ok′d
i )[m]

(12b)

where (θ(o)coko
)[m] and (θ

(d)
cdkd

)[m] denote the m-th updated values

of θ
(o)
coko

and θ
(d)
cdkd

, respectively. Since each element of Π
corresponding to the ct-th time represents the probability that a
trip at the time belongs to the ko-th origin pattern and the kd-th
destination pattern, each element of Π [m] is updated based on
(9) as

(πctkokd
)[m] =

1

nct

nct∑
ict=1

(γkokd
i )[m] (13)

where ict denotes the index of the observed trip data xi

that has the departure time ti belonging to ct, and nct =∑Wo

co=1

∑Wd

cd=1

∑n
i=1 1{(oi,di,ti):oi=co,di=cd,ti=ct}(oi, di, ti).

The EM algorithm is summarized in Algorithm 1.

III. PREDICTION OF TRAVEL DEMAND PROBABILITY

DISTRIBUTION

In this section, we aim to show that the proposed travel
demand estimation method can be effectively utilized in future
travel prediction. Since the temporal interactions are extracted
into the tensor Π with a reduced dimension of ct ×Ko ×Kd,
the proposed decomposition-based method enables to reduce
computation load of future travel prediction and improve predic-
tion accuracy. We present a computationally efficient prediction
method that can be combined with different prediction algo-
rithms including dynamic mode decomposition (DMD)-based,
LSTM-based, and ARIMA-based algorithms.

A. Problem Description

Classical prediction methods in time domain rely on the direct
use of the historical data V ct as inputs for algorithms. In com-
plex urban environment, however, the dimension of each matrix
V ct is prohibitively large. This requires a high computation load
for prediction, which may cause inaccurate prediction under
limited computational resources.

To enable an accurate prediction even for large-scale mo-
bility data, we propose an efficient method for predicting the
probability distribution of travel demand. In particular, we only
use the extracted temporal interactions Πct instead of the full
matrices V ct . This approach is based on the intended feature of
our spatiotemporal pattern extraction described in Section II,
meaning that the spatial basis patterns are static over time.
Specifically, the distribution of future travel demand can be
obtained by

Ṽ ct =
(
Θ(o)

)T
Π̃ctΘ

(d) (14)

where Π̃ct is the predicted temporal interactions between Ko

origin patterns and Kd destination patterns. Based on (14), we
can utilize different prediction algorithms (i.e., DMD-based,
LSTM-based, and ARIMA-based algorithms) for predicting
Π̃ct using the matrices Πct , ct = 1, 2, . . . ,Wt each with the
size of Ko ×Kd such that KoKd �WoWd.

B. Dynamic Mode Decomposition-Based Algorithm

DMD is a popular tool of data-driven matrix decomposition
technique that is developed using Koopman operator theory [57].
This consists in a modal decomposition algorithm that belongs
to the family of singular value decomposition (SVD). This
algorithm has a strength in providing insights into the underlying
dynamics of the data by extracting spatiotemporal interactions.
By identifying dynamic modes and corresponding eigenvalues,
it is possible to characterize the complex behavior of sequential
travel demands.

Among the temporal interaction matrices Πct , h matrices
are used as inputs for the DMD, where h ≤Wt. The vectorized
form of Πct is denoted by yct = vec(Πct) ∈ [0, 1]KoKd . The
h temporal interaction matrices can be expressed by the matrix
Y as

Y = [ y1 y2 · · · yh ]. (15)
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Algorithm 2: Estimation of the Operator Matrix A.
Require: Y1,Y2

1: Apply SVD of Y1 to get P , Σ, and QT using (18)
2: ComputeÃ using (20)
3: Compute the eigendecomposition ofÃ to get Λ and

W using (21)
4: Compute Φ using (22)

Return: Φ,Λ

From (15), we can generate two matrices Y1 and Y2, which can
be defined:

Y1 = [ y1 y2 · · · yh−1 ] (16a)

Y2 = [ y2 y3 · · · yh ]. (16b)

The goal of DMD is to estimate the linear operator matrix A
with the size of (KoKd ×KoKd) that satisfies the following
approximation:

Y2 ≈ AY1. (17)

The matrix A can be obtained by solving a least square problem
minA ||Y2 −AY1||2F . However, in many practical applications,
the dimension of OD matrices is large, which makes it difficult
to directly solve the least square problem. To overcome this
challenge, the DMD algorithm finds the eigenvectors and eigen-
values of the matrix A using Koopman approximation [58].

By applying SVD of Y1 as [59],

Y1 ≈ PΣQT (18)

whereΣ ∈ R
r×r is a diagonal matrix containing the r dominant

singular values of Y1, while P ∈ R
KoKd×r and Q ∈ R

(r−1)×r

are orthogonal matrices representing the left and right singular
vectors, respectively. The low rank approximation in (18) is
used to reduce the computational complexity from using large
dimensional trip data. From (17) and using (18), A can be
represented as

A ≈ Y2 QΣ−1PT. (19)

From (19), the low-rank matrix Ã can be obtained by projection
of A as

Ã = PTAP = PTY2 QΣ−1. (20)

Then, we can compute the eigendecomposition ofÃ as

ÃW = WΛ (21)

where W is the eigenvector matrix and Λ is the diagonal matrix
of eigenvalues. A dynamic mode matrix Φ, which contains
eigenvectors of A, can be obtained as [57]

Φ = Y2 QΣ−1W . (22)

The main steps of DMD algorithm that estimates A are summa-
rized in Algorithm 2.

Using the dynamic mode matrixΦ obtained from Algorithm 2
based on y1,y2, . . . ,yl, the future temporal interaction at the

ct-th time can be estimated as

ỹct = ΦΩct−1b (23)

where Ωct = ξctdiag(eλ1ct , eλ2ct , . . . , eλrct), b = Φ†y1, and
ct > h. The matrix Φ† denotes the Moore-Penrose inverse of
Φ. The eigenvalues in Λ are denoted by λ1, λ1, . . . , λr. The
normalization factor ξct ensures that 1Tỹct = 1, where 1 is the
one-vector. From ỹct , the estimated temporal interaction Π̃ct

between Θ(o) and Θ(d) at the ct-th time can be obtained.

C. Long Short-Term Memory-Based Algorithm

To predict the future temporal interactions, we use the LSTM
network, which is capable of learning the nonlinear dynamics of
sequential data in a form of recurrent neural network (RNN). The
tensorΠ not only relates the OD basis patterns in complex space
domain, but also involves nonlinear dynamics in time domain. In
this regard, the LSTM network can be effectively used to learn
both the spatial relations and the temporal interactions in Π by
exploiting neural networks with both long-term and short-term
memories.

For efficient prediction of complex travel demand distribution,
the LSTM-based algorithm uses a neural network that consists
of multiple hidden LSTM layers and fully connected layers.
The number of units per LSTM layer affects how well the
model describes the spatial relation inherent in each matrixΠct ,
while the number of hidden LSTM layers affects the ability to
capture hierarchical temporal structure of the tensor Π . For the
given input sequence Y in (15), the LSTM network outputs the
predicted temporal interaction at a desired time.

D. Autoregressive Integrated Moving Average-Based
Algorithm

Since travel demand is non-stationary in many complex envi-
ronments, an ARIMA model is adopted to capture the dynamic
temporal interactions in Π . An ARIMA model is expressed as
ARIMA(p, l, q)where the parameters p, l, and q denote the order
of the autoregressive model, the degree of differencing, and the
order of the moving-average model, respectively. For given tem-
poral interactions πct,ko,kd

, ct = 1, 2, . . . , h, an ARIMA model
is given in [60] as

(
I0−

p∑
i=1

αiS
i
b

)
(I0 − Sb)

l πct,ko,kd
= ζ+

(
I0 +

q∑
i=1

βiS
i
b

)
εct

(24)

for given ko and kd, where the identity operator and backward
shift operator are defined for data sequences in time domain as

I0 πct,ko,kd
= πct,ko,kd

(25a)

Sb πct,ko,kd
= πct−1,ko,kd

. (25b)

Applying the backward shift operator l times to πct,ko,kd
shifts

the data backward as S
l
b πct,ko,kd

= πct−l,ko,kd
. Using (25a)

and (25b), the l-th order difference in (24) can be expressed
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recursively as

(I0 − Sb)
l πct,ko,kd

= (I0 − Sb)
l−1 (I0 − Sb) πct,ko,kd

(26a)

= (I0 − Sb)
l−1 (πct,ko,kd

− πct−1,ko,kd
) .

(26b)

In (24), αi and βi are the parameters of the autoregressive
part and of the moving average part, respectively, while ζ is a
constant. The noise εct is assumed to follow the independent
Gaussian distribution with zero mean and unit variance. To
determine the parameters p, l, and q, the step-wise algorithm
in [60] is used for a given Π . Then the optimal parameters αi,
βi, and ζ are computed to maximize the likelihood for given p,
l, and q.

IV. CASE STUDY

This section provides results determined by applying the
proposed demand estimation method to two large-scale taxi trip
datasets.

A. Data Description

We use two datasets of taxi trip records in New York city:
(i) the yellow taxi trip data; and (ii) the high-volume for-hire
vehicles (HVFHVs) trip data. The Taxi and Limousine Commis-
sion provides access to the taxi trip data starting from 2009 [61].
These data have been frequently used in various works for
urban mobility analysis and future demand prediction [62], [63].
Yellow taxis represent the conventional taxi service, whereas
HVFHVs provide pre-arranged trip services that include Uber
and Lyft. These two trip datasets provide a variety of information
including: origin; destination; departure and arrival date/time;
trip distance; fares; and payment types. The origins and destina-
tions are identified by 265 taxi zones, of which 69 in Manhattan.
We use origin zone ID, destination zone ID, and departure time
among the data attributes in both datasets.

B. Identification of Trip Patterns

A single trip is represented by a triplet composed with origin
zone ID, destination zone ID, and departure time as in (1).
Applying the demand modeling method proposed in the previous
section to real-world trip data of New York city, we identify basis
patterns and temporal interactions and model the trip occurrence
probability of the high-dimensional and large-scale urban travel
demand. The modeling period spans over 10 days, from March
5-th to March 14-th. In such period, the number of trips by yellow
taxis is 2,701,464 and that by HVFHVs is 7,706,061. Within
this timeframe, the yellow taxi data encompass 28,102 observed
OD pairs that have passengers, with a minimum number of
passengers of 1 and a maximum number of 119. Meanwhile,
the HVFHVs trip data includes 55,635 observed OD pairs, with
a minimum number of passengers of 1 and a maximum number
of 49. The time domain is aggregated in 30-minute intervals,
which results in a total of 265× 265× 48× 10 = 33, 708, 000
possible combinations. The convergence tolerance ε of Algo-
rithm 1 is set to 10−6.

Fig. 4. Impact of the number of basis patterns on modeling accuracy.

1) Performance Evaluation: The accuracy of the proposed
model in (14) is evaluated by comparing it with the probability
distribution given by the sample mean of the taxi trip data such
that

[V ]co,cd,ct ≈
1∑Wo

c′o=1

∑Wd

c′d=1 [V
′]c′o,c′d,ct

[V ′]co,cd,ct (27)

where

[V ′]co,cd,ct =
n∑

i=1

1{(oi,di,ti):oi=co,di=cd,ti=ct} (oi, di, ti).

The Jensen-Shannon divergence (JSD) between two probability
distributions (14) and (27) is used as a metric to determine the
model accuracy, specifically

η
(
V ct , Ṽ ct

)
=

1

2

Wo∑
co=1

Wd∑
cd=1

[V ]co,cd,ct log
( [V ]co,cd,ct
[M ]co,cd,ct

)

+
1

2

Wo∑
co=1

Wd∑
cd=1

[Ṽ ]co,cd,ct log
( [Ṽ ]co,cd,ct
[M ]co,cd,ct

)

(28)

where M = (V + Ṽ )/2. The JSD in (28) measures the dis-
tance between the distributions V ct and Ṽ ct . It is employed to
assess the extent to which Ṽ ct diverges from V ct . The JSD is
non-negative and symmetric; it becomes zero if and only if two
distributions are identical.

Fig. 4 shows how the accuracy of the proposed model changes
according to the number of basis patterns. It can be noticed that
the JSD decreases with the number of basis patterns. Each box
plot has modeling results for all time periods. Since the number
of basis patterns represents the variety of sources available
for describing travel demands, having a large number of basis
patterns enhances the model’s ability to describe travel demands
in detail.

Fig. 5 shows the impact of the number of trip data n used
for modeling to the model accuracy using yellow taxi data and
HVFHVs trip data. The modeling target area in Fig. 5(a) is New
York city, while that in Fig. 5(b) is Manhattan. In both cases, Ko

and Kd are set to 10. In Fig. 5(a), the demand of yellow taxis in
New York city rises near 8,000 at 9:00 am and then declines, but
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Fig. 5. Temporal changes in modeling accuracy and the number of trip data n.

remains above 6,000 during the morning and the early afternoon.
In Fig. 5(b), the demand of HVFHVs in Manhattan also rises near
8,000 at 9:00 am and then declines sharply. These two results
show that the model accuracy changes in the opposite trend to
the changes in n. The JSD decreases with the number of data
used. In Fig. 5(b), when more than 8,000 trip data are used, the
JSD is below 0.09. Considering New York city has 265 zones
and Manhattan has 69, a sufficient number of basis patterns are
configured in HVFHVs trip modeling relative to the number of
zones. Consequently, this leads to higher modeling accuracy in
HVFHVs trip modeling than yellow taxi trip modeling. From
Figs. 4 and 5, it can be noticed that the number of basis patterns
and the amount of trip data sufficient to describe complex trip
behaviors are key factors in improving the accuracy of modeling
trip behaviors.

2) Origin and Destination Basis Patterns: To analyze the
modeling result in more detail, the OD basis patterns of yellow
taxi trips and HVFHVs trips are plotted in Figs. 6 and 7, display-
ing the basis patterns Θ(o) and Θ(d) derived from yellow taxi
trip data when Ko = Kd = 10. To better visualize the pattern
configuration, the values in each column are rescaled to 0-1
so that θ

′(o)
coko

= θ
(o)
coko

/max(θ(o)
ko

). Note that Manhattan areas
exhibit strong patterns in most of Θ(o) and Θ(d) in yellow taxi
trip data. Divided into various subregions of Upper Manhattan,
Lower Manhattan, and Midtown Manhattan, East Manhattan,

and West Manhattan, each area contributes to the composition
of overall trip patterns. We can find that adjacent neighborhoods
in Manhattan are grouped in the same pattern in many cases,
which indicates that they share the similar movements. For
example, Midtown and Lower Manhattan areas are grouped in
θ
(o)
2 , θ(d)

1 , and θ
(d)
2 . Meanwhile, we can observe that a pattern

can include areas that are separately located. For example, trips
to and from John F. Kennedy (JFK) International Airport and
LaGuardia Airport, which constitute a major movement in New
York city, are grouped in θ

(o)
6 ,θ

(o)
7 ,θ

(o)
9 ,θ

(o)
10 ,θ

(d)
6 , and θ

(d)
10 .

Additionally, several zones in Brooklyn and Queens, which
are near to Manhattan or airports, exhibit distinct patterns in
θ
(o)
9 ,θ

(o)
10 ,θ

(d)
9 and θ

(d)
10 .

Figs. 8 and 9 exhibit clear distinct patterns of HVFHVs trips
compared to those observed in yellow taxi trip data. While the
basis patterns of yellow taxi trips are predominantly grouped
within Manhattan, those of HVFHVs trips extend throughout all
five boroughs in New York city, including Manhattan, Brooklyn,
Queens, the Bronx, and Staten Island. In March 2019, the
percentage of trips having both origin and destination within
Manhattan stood at 84.1% for yellow taxi trips and 31.4% for
HVFHVs trip trips. This indicates a notable discrepancy, sug-
gesting that Uber and Lyft cater to a larger portion of passengers
outside Manhattan, whereas yellow taxis primarily serve within
Manhattan. This aligns with what can be inferred from the OD
basis patterns shown in Figs. 8 and 9.

All patterns exhibit a group formed by adjacent zones, which
indicates that nearby areas share similar trip behaviors, con-
sistent with observations in yellow taxi trip cases shown in
Figs. 6 and 7. Additionally, θ(o)

4 and θ
(d)
4 encompass Midtown

Manhattan areas, LaGuardia airport, and JFK airports, showing
a similarity in trip patterns between these regions. For instance,
when there is high demand for trips to the airports, there is
also increased demand for trips to Midtown Manhattan. In
Queens and Brooklyn, each area is divided into regions closed
to Manhattan and those that are not. Similarly, within Manhattan
itself, lower and upper regions exhibit distinct trip patterns.

3) Temporal Interactions Between Patterns: Fig. 10 shows
heat maps of Πct that are extracted in travel demand modeling
using yellow taxi trip data from 4:00 am to 9:00 am. We can find
the gradual changes in Πct over time. To figure out changes in
mobility during the time period, we need to look into Figs. 6, 7,
and 10 together in a comprehensive way. One of the noticeable
changes in Πct is the decrease in the trips to the regions in

θ
(d)
8 , which is composed of West Manhattan. Trips originated

from the regions in θ
(o)
1 and arriving to the regions in θ

(d)
4

increase. The corresponding trips are from Lower Manhattan to
East Manhattan. These trips have consistently many number of
passengers during morning. Trips from regions inθ(o)

6 to regions

in θ(d)
9 , from regions in θ(o)

7 to regions in θ(d)
1 , from regions θ(o)

9

to regions in θ
(d)
10 , and from regions in θ

(o)
8 to regions in θ

(d)
3

are the corresponding trips. Analyzing the temporal changes
in travel demand is made easier by the significantly reduced
dimension of Πct compared to the original OD matrix. This
reduction enables to capture the major temporal changes. In the
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Fig. 6. Geographical representation on Θ(o) of yellow taxi trip data when Ko = 10.

Fig. 7. Geographical representation on Θ(d) of yellow taxi trip data when Kd = 10.

next section, we will explore additional benefits of the reduced
dimension of Πct in future demand prediction.

C. Travel Demand Prediction

From the previous section, it is found that Π slowly changes
over a period of time. Based on the observed changes, we predict
the future Π and produce the future OD matrix using Θ to
reduce the computation of predicting the future travel demand

probability distribution. The prediction accuracy is measured
using the JSD based on the actual future demand distribution in
a similar way to how modeling accuracy is measured.

For the DMD-based prediction algorithm and LSTM-based
prediction algorithm, h is set to 17 and 4, respectively. The
LSTM network is trained and validated using 80% and 20%
of 9-day-long data, respectively, and we test the trained the
LSTM network using the rest 1-day-long data. The network
architecture uses the first two layers of 128 LSTM cells, followed
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Fig. 8. Geographical representation on Θ(o) of HVFHVs trip data when Ko = 10.

Fig. 9. Geographical representation on Θ(d) of HVFHVs trip data when Kd = 10.

by a fully-connected dense layer of 256 neurons and a final
dense output layer containing as many cells as the number of
outputs. The LSTM network is trained by the Adam optimizer,
employing the mean square error (MSE) as the loss function.
The learning rate and number of epochs are set to 0.001 and
1,000, respectively. For the ARIMA-based prediction algorithm,
h is set to 29. The parameters p, l, and q for each temporal
interaction pair and OD pair are determined using a step-wise
algorithm [60].

Fig. 11 shows the prediction accuracy when the proposed
pattern-based prediction method, combined with ARIMA,
DMD, and LSTM, predicts the yellow taxi travel demand in New
York city. For the pattern-based prediction method, the travel
demand model with Ko = Kd = 10 is used. Meanwhile, the
baseline method uses the whole OD demand matrices as inputs of
the prediction. Since the dimension of the input in the proposed
method is only 10× 10 and that of the OD matrix-based method
is 265× 265, the dimension of the input data is only 0.14%

Authorized licensed use limited to: MIT. Downloaded on March 03,2025 at 22:32:52 UTC from IEEE Xplore.  Restrictions apply. 



1274 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 3, MARCH 2025

Fig. 10. Grid heat maps of Π for Ko = Kd = 10.

Fig. 11. Prediction accuracy of the proposed pattern-based prediction method using yellow taxi trip data in New York city. The dimension of the input data in
the proposed method is only 10× 10, while that in OD matrix-based prediction is 265× 265.

in the proposed method compared to the conventional predic-
tion method. Nevertheless, the proposed method shows better
prediction accuracy in most of the cases. This result indicates
that Θ(o) and Θ(d) can express complex movements in the
reduced dimension. In more detail, the ARIMA shows the worst
performance in both prediction methods compared to the DMD
and LSTM. While the LSTM shows steady performance across
different prediction time horizons, the prediction accuracy of
DMD varies on the prediction time horizon. For the short-term
prediction in Fig. 11(a), DMD shows the highest prediction
accuracy. However, as the prediction time horizon gets longer,
the accuracy decreases in Fig. 11(b) and (c).

Fig. 12 shows the prediction accuracy result for the HVFHVs
travel demand in Manhattan. For the pattern-based prediction
method, the travel demand model with Ko = Kd = 10 is used.

In the baseline prediction method, the dimension of the input
is 69× 69. In this case, the dimension of the input data is
2.10% in the proposed method compared to the baseline pre-
diction method. The proposed method outperforms the baseline
prediction method in all cases, and its performance is more
improved compared to Fig. 11. The reason of the improvement
in the prediction performance is that the relative number of the
patterns used increases compared to the dimension of original
OD matrices. In addition, when the proposed prediction method
is combined with LSTM, it shows significant improvement and
the best performance.

The probability distribution of predicted travel demand can
be used as a model for generating future travel demand, con-
sidering the variability and uncertainty in travel demand. The
model generates numerous travel demand scenarios essential
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Fig. 12. Prediction accuracy of the proposed pattern-based prediction method using HVFHVs trip data in Manhattan. The dimension of the input data in the
proposed method is only 10× 10, while that in OD matrix-based prediction is 69× 69.

Fig. 13. Prediction of the number of trips of specific OD pairs in yellow taxi travel demand.

for evaluating transportation operational strategies, such as taxi
dispatching and bus scheduling. In Fig. 13, 10,000 trip scenarios
per a time period are generated using the probability distribution
of yellow taxi travel demand predicted by the proposed LSTM-
based prediction model. In each scenario, trips are generated
and then distributed across OD pairs according to the predicted
probability distribution. Fig. 13 showcases the resulting number
of trips for four specific OD pairs, considering prediction time
horizons of 3 hours and 6 hours, while the actual number of
trips is represented by the black line. Fig. 13(a) and (b) show
outcomes for trips originating from and arriving at Union square,
located in Midtown Manhattan, while Fig. 13(c) and (d) present
results for trips originating from and arriving at Harlem, also
located in Upper Manhattan. Observation reveals fluctuations in

the numbers of trips from and to both Union square and Harlem
over different time periods, with peaks typically occurring at
18:00 or 18:30, followed by a decline. This result demonstrates
that the probability distribution of predicted travel demand
accurately captures major temporal travel patterns including
peak demand periods. Consequently, this validates the accuracy
of the predicted future probability distribution, underlining the
practicality of the proposed modeling and prediction method.

V. CONCLUSION

This paper has proposed a novel method for characteriz-
ing and predicting the probability distribution of large-scale
trip data. The method reveals OD basis patterns and their
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temporal interactions by applying probabilistic tensor decom-
position approach. To infer a probability distribution of travel
demand, a latent class model is adopted and an EM algorithm
is designed. In future travel demand prediction, the OD basis
patterns and their temporal interactions are utilized to enable an
accurate prediction for large-scale mobility data. By predicting
the future temporal interactions and obtaining the probability
distribution of future travel demand, it is shown that the com-
putation load is reduced significantly. The DMD-based, LSTM-
based, and ARIMA-based prediction algorithms are combined
with the proposed prediction method. We quantify the accuracy
of the proposed method for a case study using yellow taxi trip
data and HVFHVs trip data of New York city. The impact of
factors affecting modeling accuracy was investigated, and it was
observed that the modeling accuracy increases as the number
of OD basis patterns and the amount of data used increase. In
addition, our proposed prediction method outperforms the con-
ventional prediction method in terms of the prediction accuracy
while reducing the need of both memory and computation. This
high prediction accuracy indicates that the OD basis patterns
extracted in the travel demand modeling can capture complicated
mobility patterns such as those in urban areas.
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