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Abstract—Due to the multi-dimensional search in the near-field
(NF), the excessive computational burden has become one of the
major problems. To address this issue, this paper proposes a com-
putationally efficient angle and distance estimation algorithm for
extremely large uniform planar array (UPA) systems. To reduce
computation, the proposed algorithm decouples 3D search into a
series of 2D search and 1D search. The 2D search estimates the
azimuth and elevation, followed by the 1D search that estimates
the distance. While the proposed algorithm brings significant
improvement in computational complexity, the estimation of the
proposed algorithm is guaranteed to be accurate as long as
the distance between the receiver and transmitter (or scatterer)
exceeds a specific threshold. For UPAs, we establish that this
threshold is around a quarter of the Rayleigh distance. The
simulation results demonstrate that the proposed algorithm has
a superior accuracy-complexity trade-off compared to existing
works.
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I. INTRODUCTION

As the demand for larger throughput continues to grow, the
carrier frequency, as well as the number of antenna elements,
have been increasing rapidly [1], [2]. When the system deploys
the large antenna array, the NF effect is non-negligible since
Rayleigh distance, the criteria that discriminate between far-
field (FF) and NF, is proportional to the size of the antenna
array [3]. Although the NF effect poses a challenge for channel
estimation, it brings a new opportunity for ranging, which can
contribute to the advancement of localization and location-
aware communications [4]-[8].

To estimate the channel in the NF, the curvature of the
spherical wavefront needs to be considered. Due to this nature,
not only the angle, but the distance between the transmitter
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and receiver affects the steering vector [9]-[14]. However, the
problem of NF channel estimation is excessive computation
time that is induced by a multidimensional search for angle
and distance estimation [12], and this problem becomes more
severe in UPA systems [11]. The algorithms in [12], [13]
effectively reduce the computation without affecting the angle
and distance estimation performance. However, they require
the inter-antenna spacing smaller than a quarter-wavelength
to prevent ambiguous estimation. This limitation is critical in
practice since the antenna array is designed to have a spacing
of more than half-wavelength [15]. The algorithm in [14] also
aims to reduce the computational complexity. However, it only
exploits one column of UPA for estimation, thereby suffering
from performance degradation.

In this paper, we propose a computationally efficient NF
angle and distance estimation algorithm that does not suffer
from the constraints of existing works. The proposed algorithm
does not require inter-antenna spacing of less than a quarter-
wavelength to avoid ambiguous estimation. Moreover, the
proposed algorithm leverages the entire antenna elements,
which makes the estimation robust to noise and better cap-
ture the curvature of the wavefront. However, the proposed
algorithm requires a specific condition to guarantee accurate
estimation. We reveal that this condition is satisfied when
the distance between receiver and transmitter (or scatterer)
exceeds a quarter of Rayleigh distance. The details of the
proposed algorithm are explained in the following sections.

Notations: Random variables are displayed in sans serif,
upright fonts; their realizations in serif, italic fonts. Vectors
and matrices are denoted by bold lowercase and uppercase
letters, respectively. The transpose, conjugate transpose, and
complex conjugation are denoted by (-)*, ()%, and (-)*. The
inverse operation is denoted by (-)~!. The operator diag(-)
denotes the diagonal matrix whose diagonal elements are the
elements of a given vector. The operator *{-} denotes the real
part of a complex number. The operator ||-||2 denotes /2 norm.
N x N identity matrix is denoted by I . The projection matrix
of X is denoted by Px, which equals X (X"X)~1XH,
A circularly-symmetric complex Gaussian random variable
whose mean is y and variance is o2 is denoted by CA(u, 02).
The operator arg(-) denotes the phase of the given value.

II. SYSTEM MODEL

Consider a base station (2M, + 1) x (2M, + 1) UPA,
user equipment (UE) with a single omnidirectional antenna,
and scatters in Fig. 1. Here, the UE transmits the orthogo-
nal frequency division multiplexing (OFDM) pilot symbols
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Figure 1. A graphical representation for the system model. In this figure,
there are two signal paths, and the transmitter and all the scatterers are in NF.
Both My and M, are 2.

through K subcarriers, and the base station (BS) receives the
pilot symbols. The BS is equipped with a hybrid beamformer
with N radio frequency (RF) chains. In the UPA, the spacing
between adjacent antennas is set to A\/2, where A denotes the
wavelength. The size of array is M\ x M,\, and Rayleigh
distance equals 2\(M2 + M?2) [3]. The number of antennas,
M, equals (2My +1) x (2M, + 1). The antenna in the center
of the UPA is located in the origin, and all the antennas are
located on the xz plane for notational convinience.

Letting d denote the distance between the center of the UPA
and the UE (or one of the scatterers), the position of UE can
be given by [d cos ¢sinf,dsin ¢sin 6, dcos0]T. Here, ¢ and
0 denote the azimuth and elevation of the signal impinging
on the UPA. The distance between the m-the antenna and the
UE, d,,, is given by

dm £ ||[p, 0 p%] — [dcos¢sing dsinpsinf dCOSG}HQ
(D
where pY, and p?, denote the x-coordinate and z-coordinate of
the m-th antenna element. A NF steering vector a(¢, 0, d, f) €
CMx1 is given by

2m(dy—d) . 2m(dg—d) 2n(dpr—d) T

a(¢,0,d, f) = [ej e T A el T )

where f denotes the carrier frequency, which equals Ac with
c denoting the speed of light.

A channel vector at the k-th subcarrier, h(¥) € CM*1 s
given by [16]

L
R =3 S onaln, b, dy, fE)em2rETDAT3)
=1

for Kk = 1,2,..., K, where L denotes the number of signal
paths, and «y, ¢;, 6;, and 7; respectively denote the complex
channel gain, angle-of-arrival (AOA) azimuth, AOA elevation,
and time-of-arrival (TOA) of the [-th signal path. If the line-
of-sight (LOS) path exists, the first path denotes the LOS path.
When the LOS path exists, d; denotes the distance between
the transmitter and the center of the array, whereas d; denotes

the distance between the (I — 1)-th scatterer and the center of
the array for [ =2,3,..., L.

Letting the pilot symbol be transmitted a total of P times,
the p-th received pilot symbol at the k-th subcarrier, :L'Z(,k), can
be represented as

wék) = Wth(k)sz(,k) + nz(jk) 4)
fork=1,2,...,Kandp=1,2,..., P, where W, € CM*V

denotes the combining matrix for the p-th pilot symbol, sl(,k)

denotes the p-th pilot symbol at the k-th subcarrier, and
nz()k) € CN*1 denotes the noise vector. Squared [? norm of
each column of W), equals M /N. Each entry of n,(,k) follows
CN(0,0?), where, 0% denotes the power of the noise. From

pilot symbols, yz(,k) € CN*1 is drawn as

(k) & zf (9 Hyp (k) | o(k)
Py TP
P

for k = 1,2,...,K and p = 1,2,..., P, where vl(,k) =
nz(,k)(sz(,k))*/ s,(,k)|2. In this paper, 51(,’“)| is set to 1 so that
the power of the noise part in y, ~ remains to be o2. Lastly,
P received pilot symbols are organized as

T
y) £ [(y§k))T (ydHT - (ygak))T} (6)

for k=1,2,..., K, where y*) € CNP*1 denotes organized
pilot symbols at the k-th subcarrier. y*) can be alternatively
represented as

y(k) — WHR®) =+ v(F) (7)

where W 2 [WW,.--- Wp] € CMXNP and vk 2
()T (Wg)T - (W) TIT.

According to (7), there are a total of N PK entries, and the

total of noise power equals > N PK . Thus, the signal-to-noise
ratio (SNR), 7, is defined as

K Hy(k)||2
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III. PROPOSED NF ANGLE AND RANGE ESTIMATION
ALGORITHM FOR UPA

In this section, we introduce the NF angle and range algo-
rithm that significantly reduces the computational complexity
by decoupling the 3D search into a series of 2D search and
1D search. Moreover, we derive the condition that guarantees
the accurate estimation of the proposed algorithm.

A. Condition for Lower-dimensional Search-based Estimation
in Near-field

Letting G,, G, and G4 respectively denote the number of
discretized azimuths, elevations, and distances for searching,
the sets of candidate azimuths, elevations, and distances can
be given by
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where S,, Se, and S4 respectively denote the set of discretized
azimuths, elevations, and distances. The maximum searching
distance is denoted by d,,.x. Generally, d,,.x is set to Rayleigh
distance [9]-[11].

The proposed algorithm first estimates the azimuth and ele-
vation with a 2D search. During the 2D search, the searching
distance is fixed. This 2D search-based azimuth and elevation
estimation can be represented as

K

{dan.Oap} = argmax S| (Wa(o,6,d5, 1)) "y )|
6ES., 1T

0eS.e

(12)
where QZ)QD and éQD denote the azimuth and elevation estimated
by 2D search, and d; denotes the fixed constant for the
distance. We set ds to a sufficiently large value (e.g., infinity),
such that the NF steering vector in (12) becomes the FF
steering vector. Letting b(¢, 0, f) € CM*! denotes the FF
steering vector, the m-th element of b(¢, 0, f) can be given
b

y bm(¢, 0, f) A eijz%(pf" cos ¢ sin 0+p7, cos0) (13)

With the FF steering vector, (12) can be rewritten as

K 2
{d2p, fan} = argmax >~ |(Wb(6,0, 1))y ™|
déesi’ k=1

(14)
However, to guarantee that the 2D search estimates the az-
imuth and elevation accurately, it must be proved that the
objective function in (14) is maximized only when QBQD and
éQD equals one of the true azimuths and elevations. Otherwise,
the results of the 2D search may have bias even under ideal en-
vironments (e.g., noiseless environments). For the derivation,
we consider that the NF steering vectors for all signal paths
are orthogonal to each other since M is large. In this case,
each signal path does not affect the estimation of azimuths
and elevations of other paths. Also, the errors induced by
the discretized grid and the noise are not considered in this
derivation.

Letting ¢, 0, and d respectively denote the azimuth, ele-
vation, and distance of the strongest signal path, the objec-
tive function in (14), |b(¢, 0, f*NEWW Ha(s,0,d, f(k))|2,
must be maximized only when ¢ = ¢ and § = 6. We first
design W that satisfies WW* = PI,;. Then, WW#
becomes a constant, so the objective function in (14) reaches
the maximum when |b(¢,9,f(k))Ha(¢3,§, J,f(k))|2 is max-
imized.! If the condition in the following theorem is satis-

ITo satisfy this condition, NP has to be equal to or greater than M, and
this may cause the large overhead for collecting measurements. To reduce the
overhead, a beamwidth widening strategy that deactivates the part of the array
can be exploited [17]. However, this strategy reduces the Rayleigh distance
since it only uses a part of the array. In fully digital beamformers, designing
W does not need to be considered.
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Figure 2. The absolute error of the azimuth and elevation according to the
distance between BS and UE. The black dotted line denotes the threshold in
Theorem 1.

fied, |b(¢,0, f ) a(¢,0,d, f(k))‘2 becomes maximum only
when ¢ = ¢ and 0 = 6.

Theorem 1. If d > 35[(M|cos¢cosf| + M,|sinf|)?* +
(M sin ¢)?|, the azimuth and elevation estimated by the 2D
search are guaranteed to be the true azimuth and elevation

when there is no additive noise.

Proof. See Appendix A. O

Theorem 1 shows the 2D search-based estimation is guar-
anteed to be accurate when the distance between the UE
(or scatterer) and the BS exceeds the specified threshold.
The threshold in the theorem approaches maximum when
¢ = 0 = 90°, which means that the transmitter (or scatterer) is
located at the front of the receiver. In this case, the threshold
equals to A\(M2 + M?2)/2, which is the quarter of Rayleigh
distance. To illustrate the insight of Theorem 1, numerical
results are presented in Fig. 2. In these results, there is no
noise, and only a LOS path between BS and UE exists. My
and M, are respectively set to 64 and 32. Fig. 2 shows that
the absolute error of both azimuth and elevation reaches the
minimum when the distance is larger than the threshold in
Theorem 1, which changes according to azimuth and elevation.
Exceptionally, the elevation estimation is less affected by the
distance if the elevation is close to 90°. This result also
illustrates that conducting a 3D dimensional search outside
the established threshold is not required.

B. Sequential Angle and Distance Estimation with Greedy
Algorithm

In this section, we introduce the computationally efficient
estimation algorithm, considering AOA and distance of every
signal path satisfy the condition in Theorem 1.2 The proposed

2In practice, the equipment with a large antenna array (e.g., BS) is located
in a high place, so satisfying the condition may not be a major issue. If an
accurate estimation of the angles and distances that do not satisfy the theorem
is required, a 3D search can be conducted on a range within the threshold in
the theorem.



algorithm first estimates the azimuth and elevation by a 2D
search. Then, the distance is estimated by the 1D search on the
distance axis, with the searching angle fixed to the previously
estimated azimuth and elevation.

Letting zl(k) denotes the vector for the k-th subcarrier that
is used in the [-th iteration, the [-th AOA is estimated as

K

PN Ay H 2

{d,00} —argmax Y- |(WHb(0,0, 7)) 20| (15

PES., k=1

0€S.

where ¢Ez and 91 denotes the [-th estimated azimuth and

. PP . (k) (k) _

elevation. In the initial iteration, z;"’ equals y'* for k =

1,2,..., K. After obtaining ¢; and 6;, the [-th distance is
estimated as

K

d; = argmax E
deSq k=1

A A 2
(W a(d br,d. s ) "2t (6)

where ch denotes the [-th estimated distance.

The components of all the estimated AOAs and distances
that are previously estimated are subtracted from zl(k). Note
that this subtraction is similar to that of orthOﬂgonal matching
pursuit (OMP) [18]. The bases over which zlk) is projected
on, Al(k) € CNPxL is represented as

Al(k) £ WH |:a(92)1a917d17f(k)) a(g)Qaé27d\27f(k))
- a(bi, b, dr, D). (7)

(k)

141 18 set to

For the next iteration, z

20 L (Iyp— P §k>)zl(k) (18)

I+1 = A
for K = 1,2,..., K. A process from (15) to (18) denotes
one iteration. Considering that L is already estimated,’ all the
AOAs and distances can be estimated by L iterations. The
computational complexity of the proposed AOA and distance
estimation is O (LNPK (G,G¢ + G4)). Reminding that G,
Ge, and G4 is set proportional to M [20], the complexity of the
proposed algorithm is much lower than O (LNPKG,G.Gq),
the complexity of 3D search-based algorithm [11].

IV. SIMULATION RESULTS AND DISCUSSIONS

For the simulation, the center frequency f is set to 140 GHz.
M, and M, are respectively set to 64 and 32 so that M =
129x65. In this setting, Rayleigh distance equals 21.94 m. The
number of RF chains and the number of pilot symbols, N and
P, are set to 64 and 132. The combining matrix W € CMxNP
is set as any M columns of NP x NP 2D-discrete Fourier
transform (DFT) matrix [21]. The number of signal paths L
is set to 3, which is comprised of one LOS path and two

3The number of signal paths can be estimated by counting large singular
values of the matrix whose k-th column is h(¥). For the counting, criteria
such as minimum description length (MDL) and Akaike information criterion
(AIC) can be exploited [19]. On the other hand, we can set the threshold to
determine the end of the iteration in a way that many compressive sensing
(CS) techniques do.

Table I. Computational complexity and average computation time of all
algorithms
. . Average
Computational complexity computation time
Proposed O (LNPK (GaGe + Gq)) 19.57 seconds
3D-OMP [11] O(LNPKG,G:Gq) 200.5 seconds
O(LNPK(M,GcGq
DS-OMP [14] +MGa)) 1.39 seconds

NLOS paths. Subcarrier spacing Ay is set to 960 kHz. The
number of subcarriers K is set low at 5 due to the excessive
computation time. All azimuths, elevations, and distances are
set according to the coordinates of the BS, UE, and scatterers.
The coordinate of the BS is fixed to [0, 0, 3] m. However, the
coordinates of the UE and scatterers are set differently for each
simulation. The number of discretized azimuths, elevations,
and distances, G, Ge, and G, are set to 4 M, 4M,,, and M,
respectively. For root-mean-square error (RMSE) calculation,
200 Monte Carlo trials are conducted, and Intel i5-13600KF
CPU (3.50 GHz) and 32 GB RAM are used in this simulation.

For the performance evaluation, the proposed algorithm is
compared with 3D-OMP [11] and DS-OMP [14]. In [11],
azimuth, elevation, and distance are estimated via 3D search,
which is the most time-consuming among all algorithms.
In [14], azimuth, elevation, and distance are estimated in
a more efficient manner. To prevent excessive computation,
G, Go, and G4 are set to M,, M,, and M, only for
the simulation of 3D-OMP [11]. The computational com-
plexity and average computation time of all algorithms are
summarized in Table I. Although the grid size is set large
for the proposed algorithm and DS-OMP [14], the average
computation of the proposed algorithm and DS-OMP [14] are
19.57 seconds and 1.39 seconds, which are much smaller than
the average computation of 3D-OMP [11], 200.5 seconds. This
result shows that the actual computation time follows the trend
of the computational complexity.

Fig. 3 shows the RMSE of azimuth, elevation, and distance
versus the SNR. In this simulation, the distance between
BS and UE is set to 15m, and the distances between BS
and scatterers are randomly set between [5,15]m. The z-
coordinate of UE and scatterers is fixed to 0. The azimuths
of all signal paths are randomly set between [30°,150°], and
the elevations are determined based on the height of UE and
scatterers. In Fig. 3, the proposed algorithm has the lowest
RMSE in all ranges of SNR, and there is a reason. First, DS-
OMP [14] employs only one column of UPA for elevation and
distance estimation. Although this reduces the computational
complexity, the algorithm becomes less robust to noise. The
high RMSE of 3D-OMP [11] is mainly due to the sparse
search. On the other hand, the proposed algorithm can reduce
the complexity while leveraging the entire array. For this
reason, the proposed algorithm can be considered as an option
with the best accuracy-complexity trade-off.

Fig. 4 shows the RMSE of azimuth, elevation, and distance
versus the distance. In this simulation, the SNR is set to 10 dB,
and the distance between BS and UE (and scatterers) is set
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Figure 3. The RMSE of the azimuth, elevation, and distance versus SNR.

according to the x-axis in Fig. 4 (1 m to 31 m). The azimuths
of all signal paths are randomly set between [30°,150°],
and the elevations are randomly set between [90°,180°]. In
Fig. 4a, the RMSE of azimuth and elevation of the proposed
algorithm is high in the close distance due to Theorem 1.
On the other hand, the angle estimation of 3D-OMP [11]
is not affected by distance. Interestingly, the RMSE of DS-
OMP [14], which also decouples 3D search, is also inversely
proportional to the distance. In Fig. 4b, the accuracy of
distance estimation is inversely proportional to distance. This
is because the curvature of the wavefront is more distinct when
the BS and UE are close. However, the RMSE of the proposed
algorithm increases at a close distance since an erroneously
estimated angle affects the following 1D distance estimation.
Nonetheless, the distance estimation of the proposed algorithm
is more accurate than the others if the distance is larger than
1m.

V. CONCLUSION

In this paper, we presented a computationally efficient
angle and distance estimation algorithm for extremely large
UPA systems. To reduce computation, the proposed algorithm
decouples the original 3D search-based azimuth, elevation,
and distance estimation into a series of 2D search-based
azimuth and elevation estimation and 1D search-based distance
estimation. We revealed that the estimation of the proposed
algorithm is accurate when the UE (or scatterers) move away
from the BS beyond a certain threshold, which is around a
quarter of Rayleigh distance in UPA systems. This finding
shows that a high-dimensional search for angle and distance
estimation is unnecessary except when the UE (or scatterers)
exists in a region close to BS. The simulation results show that
the proposed algorithm has a superior accuracy-complexity
trade-off compared to existing works. The findings in this
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Figure 4. The RMSE of the azimuth, elevation, and distance versus distance.

paper envision faster communication, positioning, and sensing
in the NF and can provide a guideline for designing systems
with large array antennas.

APPENDIX A
PROOF OF THEOREM 1

With Fresnel approximation, the exponent of the m-th
element of the NF steering vector is approximated as

2
In (@ (6,0,d. f)) = j5 [ = (¥, cos ¢sin + pf, cos )
+2id (p%, cos g cosf — p? sinf)? + (p¥, sin ¢)? H.(19)

Using the approximation in (19), the square of the correlation
between the FF steering vector and the NF steering vector,
|b(¢),9, Na(9,0,d, f) 2, then is approximated as

|b(¢,0, 1) a(,0,d, )|

cos ¢ cos §—p%, sin §)2+(p’7(n sin ¢)2

M x
2 (P
~1 E el N 2d X
m=1

ej27" [(pZ, cos ¢ sin O+p?, cos 0)—(p, cos ¢ sin O+p?, cos 0)] ‘2 (20)

In this appendix, we verify if the approximated correlation in
(20) is maximized when 6 = . For notational convinience,
we introduce variables A,,, and B,,, which are denoted by
(p%, cos ¢ cos G—p?, sin 8)2+(pX, sin §)2

2d 21
[(p%, cos ¢ sin @+p?, cos 0)—(p, cos ¢ sin O+p?, cos 0)] (22)

(>

e’
-2
e’

Am
B,

y‘:, y‘?

[I>

for m = 1,2,...,M. When the (M + 1)/2-th antenna is
placed at the center, Ay, = Apyj—pmy1 and By, = By, 1y



form =1,2,..., (M — ) /2. With this symmetric property,

(¢,0.d

1b(¢,6, f)a f)| can be simply represented as
[6(6,0, /)" a(6,6.d. /)"

—1+‘Z2A R{B

. { :2_31 QAM%{BM}}{ :; 2Ajn8?{Bm}}

]\llMl

=1+ Z Z 44, A R{ B Y R{ B, }

=1 m=
M1M1

=1+ Z Z AR{ A ANR{ B, }R{B,.}.

n=1 m=1

(23)

The first approximation in (23) equals to the approximation
made in (20). R{A4,, A%} is a constant since ¢ and 6 are the
only variables that change. R{B,,} and {B,} are variables
between -1 and 1, where they are maximized when 6 is 6.

The orgamzed representatlon in (23) tells that
1b(¢, 6, f)"a(¢,6,d, f)| is maximized if following
conditions are satisfied. These conditions are:

« the part affected by ¢ and 0, R{B,,, }R{B,}, is a maxi-

mum value for myn=1,2,...,(M —1)/2; and
o the constant part, R{A,, A%}, is a positive value for
mn=12...(M-1)/2.

However, note that these are sufficient conditions for maximiz-
ing |b 6,0, )7 a(e,0,d, f)|2 For all possible combinations
of m and n, R{B,,}R{B,,} is maximized to 1 when ¢ = ¢
and 0 = 0. R{A,, A%} is a positive value when the phase of
the complex value, arg(A,, A%), is between —m/2 and 7/2.
According to (20), (AmAZ)‘ is maximized when the m-th
antenna is one of the antennas in the corner of the UPA and
n = (M — 1)/2. If this maximum phase difference is smaller
than 7/2, R{A,, A% } is always a positive value. The maximum
phase difference between A,,, and A, can be represented as

max |larg(Am A})|
m,n:172,‘..,M;1
_ TA[(My|cos ¢ cos 0] + M,|sin6])? + (M sin ¢)?] 4)
= ] :

The condition that satisfies max |arg(An, A})| < /2 is

d> )\[(M | cos ¢ cos 0] + M, |sin0])* + (M sin §)*] (25)

where this is the condition in Theorem 1.
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