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Abstract—With the advent of cooperative intelligent transport
systems (C-ITS) and vehicle-to-everything (V2X) communica-
tions, cooperative positioning based on V2X sharing of location
information has been emerging as a promising augmentation sys-
tem for conventional satellite navigation. An example is implicit
cooperative positioning (ICP) which relies on Bayesian filtering
for cooperative sensing of targets that are used as reference
points for improving vehicle positioning. ICP methods, however,
rely on pre-determined models which makes them sub-optimal in
case of non-Gaussian non-linear models or complex cooperation
graphs. To address these limitations, the paper proposes a
decentralized-partially observable Markov decision process (Dec-
POMDP) framework, paired with deep multi-agent reinforcement
learning (MARL) algorithms. We introduce a novel ICP-multi-
agent proximal policy optimization (MAPPO) algorithm where
distributed agents (i.e., vehicles) dynamically activate/deactivate
the radio links for cooperation with the neighbors to optimize
the communication efficiency, still guaranteeing accurate posi-
tioning. We reproduce a realistic C-ITS scenario with CARLA
simulator, where vehicles move according to real-world dynamics
and communicate with each other to cooperatively sense their
locations. Results show that the proposed ICP-MAPPO algo-
rithm, with its dynamic-decentralized-execution and centralized-
training schemes, outperforms state-of-the-art ICP methods by
21% in terms of positioning accuracy, and it can reduce the
communication overhead by following the optimal learned policy.

Index Terms—MARL, Dec-POMDP, implicit cooperative posi-
tioning, Bayesian-filtering, message passing algorithm.
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I. INTRODUCTION

OOPERATIVE POSITIONING (CP) represents a key

enabling feature for future automated mobility services
[1]-[8]. Automated vehicles leverage an on-board sensor suite
including global navigation satellite systems (GNSS), light
detection and ranging (LIDAR), radio detection and ranging
(RADAR), and stereo cameras to perceive the surrounding
environment and perform automated maneuvers [9]-[13]. At
today, these sensors are not yet able to guarantee high-
precision localization in harsh environments such as dense
urban areas or canyons and this is a main issue for autonomous
driving functions [14]. Recently, methods have been proposed
to combine localization sensors with the latest 5th generation
(5G) of cellular communications [15]-[20], depicting a new
horizon for mobile connectivity and positioning services [21]—
[24]. 5G vehicle-to-everything (V2X) communications are
envisioned as crucial in the evolution towards cooperative
intelligent transport systems (C-ITS) [25]-[28] by enabling
simultaneous communication and localization functionalities
[29]-[31]. CP among vehicles, by means of sidelink V2X com-
munications, can be used to overcome the GNSS performance
degradation and guarantee a seamless high-accuracy posi-
tioning (HAP) service [32]-[36]. The complexity lies in the
resource-intensive nature of CP [37], which involves vehicles
interacting with each other repeatedly to determine positions.
In particular, this cooperative process demands significant
power and bandwidth [38]-[40], while also facing challenges
in scheduling transmissions due to the intricate measurement
and information fusion processes [41]-[43]. These factors
may cause larger delays and scalability issues in cooperative
localization [44], [45].

An emerging approach for cooperative vehicle localization
is implicit cooperative positioning (ICP) [32], [46], which
integrates GNSS and onboard passive sensor data through
Bayesian-filtering, e.g., conventional extended Kalman filter
(EKF) or message passing algorithm (MPA), to coherently
fuse the measurements at different vehicles. In ICP, passive
objects such as poles, road signs, or traffic lights, are cooper-
atively detected by multiple vehicles and exploited as noisy
anchor points to enhance the vehicle location accuracy. In
case of a centralized data-processing architecture gathering all
vehicles’ measurements, convergence can be achieved, but at
the expense of high computational complexity. Standard MPA
algorithms enable decentralized processing but are optimal
only in case of Gaussian-linear models and acyclic factor
graphs [47]-[50]. Recent solutions tried to limit the afore-
mentioned problems by either performing fully-distributed
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particle-based MPA between vehicles [34] or auto-adjusting
the parameters of time-varying models [51]. Still, they rely
on particle-based solutions which require high communication
and computational loads which limit their scalability.

In recent years, there has been a growing reliance on
machine learning (ML) tools to overcome the limits of
conventional approaches, especially regarding scalability and
non-linear models [52]-[55]. In particular, the reinforcement
learning (RL) paradigm [56]-[58] and its deep learning (DL)-
based version [59]-[61] are notably effective in challenging
single-agent Markov decision processes (MDPs) where labeled
data are scarce or costly. They also excel in environments
where the agent’s actions directly impact the state of the
environment and long-term rewards are prioritized [62]-[64].
Indeed, RL can be seen as a generalization of Bayesian
filtering where the agents do not just predict the state through
belief computation but also make decisions to optimize the
cooperative process by maximizing long-term rewards, with
a policy guiding the decision from state to action. RL is
especially well-suited for complex scenarios with extensive
state and action spaces, where deep neural networks (DNNis)
can efficiently approximate the high-dimensional, nonlinear
functions that represent such policies [59], [65]. This approach
has been successfully applied in several fields, varying from
rate and power control [66]-[69] to dynamic spectrum access
in multi-user scenarios and efficient scheduling in vehicular
networks [70]-[73].

In case more than one agent acts in the environment and the
state is not directly observable, we categorize the framework as
multi-agent RL (MARL) [74] and the system as decentralized-
partially observable MDP (Dec-POMDP) [75]-[77]. MARL
involves independent agents whose actions influence each
other’s perception of the environment, and it is often solved
with the usage of recurrent neural network (RNN), exploiting
histories of observations and actions [78]. MARL algorithms,
similarly to RL methods, can be divided into two categories:
Q-learning and policy optimization (PO) (which comprises
actor-critic methods) [79]-[81]. Q-learning focuses on esti-
mating the long-term reward (i.e., Q-value) of each action,
selecting the action with the highest Q-value and indirectly
(i.e., not explicitly) formulating the policy [82]-[84]. On the
other hand, PO directly optimizes the policy through the
gradient of the total reward relative to policy parameters [85]—
[88]. Multi-agent PO algorithms, especially when combined
with a centralized agent learning and a decentralized execution
of the policies (e.g., multi-agent proximal policy optimization
(MAPPO) [85]), have shown remarkable performances with
respect to Q-learning algorithms. This is mainly due to their
being free of learning biases and improved sampling efficiency
thanks to training guidelines like parameter sharing [89]-[91].

First attempts to employ MARL for CP, most of the liter-
ature works focus on target tracking for intelligent unmanned
aerial vehicles (UAVs) [92] or agent scheduling for improving
CP [93]. In [92], the RL objective was to maneuver the
agents to track passive objects. However, they considered the
state (i.e., the location) of the agents as known, while the
main challenge is to estimate from the measurements their
state jointly with target sensing. In [93], the agent state was
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estimated with conventional MPA, while the RL objective

was to activate links between agents to optimize cooperative

positioning performances (i.e., by minimizing the positioning
error bound (PEB)). The drawbacks of this method are that RL
is not actively used for positioning but rather as an assistance

method to MPA, and that they consider one agent only, i.e., a

single link, at the time instead of exploiting the full potential

of multi-agent systems (MASs).

Overall, the fundamental unresolved questions related to
CP are as follows: i) how to design a decentralized MARL
algorithm that simultaneously performs the computation of the
agent state beliefs and the scheduling of the agent-to-agent
communication resources, optimizing both location accuracy
and communication efficiency; ii) what positioning accuracy
improvement can be achieved with respect to state-of-the-art
Bayesian approaches like ICP that exploit passive object de-
tections between multiple agents; iii) what are the main trade-
offs between positioning improvement and communication re-
source optimization. Addressing these questions is mandatory
for the employment in connected automated vehicles (CAVs),
in particular to ensure scalability and handle real-word impair-
ments encountered in vehicular scenarios. In this perspective,
the goals of this paper are to develop agent-specific policies for
communication scheduling between neighbors and, at the same
time, learning a representation of the system dynamics that
takes advantage of the selected neighbors’ measurements. We
propose a MARL-based ICP, a new paradigm in which PO RL
algorithms are exploited to extend the conventional Bayesian-
filtering approach incorporating the actions of the agents.
The main idea is to learn from data the relation between
agents’ states and passive feature observations (see Fig. 1 for a
visualization of the cooperative scenario) by selecting for the
cooperation only those links to the neighbors that can provide
a significant gain to the positioning accuracy. This approach
is shown to not only improve the localization performance but
also enhance the communication efficiency.

In this paper, we propose a new MARL algorithm, namely
ICP-MAPPO, expressly designed for performing efficient dis-
tributed positioning through the MARL framework and ex-
tending the conventional Bayesian-filtering ICP to data-driven
approaches. The key contributions are as follows:

e We revise the ICP Bayesian-filtering approach analyzing the
current limitations and investigating more general frame-
works for solution, drawing from the Dec-POMDP system
model and MARL methods.

o We reformulate the ICP methodology into a MARL problem
and we design the new ICP-MAPPO solution, relying on
dynamic-decentralized-execution and training schemes to
simultaneously optimize the Bayesian-filtering and MARL
objectives.

e We validate the proposed ICP-MAPPO approach in a re-
alistic C-ITS scenario simulated with CARLA [94], where
CAVs perform CP by exploiting passive targets, i.e., poles,
distributed over the scene.

e We perform a comparison with the state-of-the-art ICP
algorithm [32] and single-agent-based algorithms. We prove
the superior performances of the proposed algorithm both
in terms of positioning error and communication efficiency.
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® Passive sensed object

@ Vehicle

Fig. 1. Cooperative positioning scenario with twenty vehicles (blue vehicle
icons), sensed poles acting as ancors (red circles) and detections (black lines).

TABLE I
MAIN ABBREVIATIONS

Acronym Definition

A2A Agent-to-agent

A2T Agent-to-target

Dec-POMDP Decentralized-partially observable Markov decision
process

EKF Extended Kalman Filter

ICP Implicit cooperative positioning

LSTM Long short-term memory

MLP Multi-layer perceptron

MAPPO Multi-agent proximal policy optimization

MARL Multi-agent reinforcement learning

MPA Message passing algorithm

For easy reference, Table I lists the main abbreviations used
throughout the paper.

The rest of this paper is structured as follows. Sec. II
describes the system model of cooperative agents. Sec. III
reviews the ICP Bayesian-filtering. Sec. IV presents the
MARL framework and the proposed ICP-MAPPO execution
and training schemes. Sec. V provides information about the
simulated scenario and the results. Finally, Sec. VI draws the
conclusions.

Notations

Random variables are displayed in sans serif, upright fonts;
their realizations in serif, italic fonts. Vectors and matrices are
denoted by bold lowercase and uppercase letters, respectively.
For example, a random variable and its realization are denoted
by x and z; a random vector and its realization are denoted by

TABLE II
LIST OF NOTATIONS

Notation Definition

N, K Number of agents and passive objects

Sit» Ait, Ot State, action and observation of agent 4 at time ¢
th, hXt History in belief and critic NNs of agent ¢ at time ¢
T, T Trajectory and transition at time ¢

re, Re Reward and reward-to-go at time ¢

79, Vg, by Actor, critic and beliefs NNs

H, L, Horizon and trajectory length

Aig Advantage function of agent ¢ at time ¢

a, B, € Entropy, reward and clipping coefficients

Y, Discount factor and learning rate

x and «; a random matrix and its realization are denoted by X
and X, respectively. Random sets and their realizations are de-
noted by up-right sans serif and calligraphic font, respectively.
For example, a random set and its realization are denoted by X
and X, respectively. The function py(x), and simply p(z) when
there is no ambiguity, denotes the probability density function
(PDF) of x. Notations X", X* and X" indicate the matrix
transposition, conjugation and conjugate transposition. With
the notation x ~ N(u,0?) we indicate a Gaussian random
variable x with mean p and standard deviation o, whose
PDF is denoted by N(z;u,0?). We use E{-} and V{-} to
denote the expectation and the variance of a random variable,
respectively. R and C stand for the set of real and complex
numbers, respectively. Finally, we define with blockdiag(-)
the block diagonal matrix whose diagonal contains the input
blocks matrices.

Notations and definitions of important quantities used in the
paper are summarized in Table II.

II. SYSTEM MODEL

We consider a vehicular network where a set of N vehicles
engage in cooperative localization as depicted in Fig. 1.
The connectivity graph for vehicle cooperation at time ¢ is
G = (V,&), with V ={1,2,..., N} representing the set
of agents (vehicles), and &; the edges (communication links)
among them. Each agent 7+ € V in the network at time
t has a set of neighbors N;,, and it is assigned a state
(t) = [u(,A)T vgft‘)T]T A) and v(’i) are the 2D

s, it , where u; i

position and velocity vectors, respectively, defined in a global
coordinate system. We denote with si™) = [sgﬁ)]ivzl the
aggregate state of all the vehicles at time ¢. The kinematic

state transition of vehicle ¢ at time ¢ is modelled as
sie’ = O (s3)1wiy ) (1)
where f(*)(-) is is a nonlinear function that governs the
dynamics of the vehicle’s state and wgﬁ‘)_l represents the
driving noise process, incorporating the uncertainty in motion.
The model in (1) is associated to a state-transition PDF
denoted as T(sﬁ”sﬁ?_l) 2 p(sgﬁ) \sg‘i)_l)
The scenario includes a set F = {1,2,..., K} of K static
and passive objects (or targets, denoted as red circles in Fig. 1)
that vehicles can detect and localize by on-board sensors. To
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facilitate detection by vehicle sensors, specific objects easily
identifiable and suitable for the purpose should be used. In
this study, poles have been selected due to their ubiquity
(especially in urban areas), ease of recognition, and fixed
nature. Each pole & is described by a 2D position state s,(C’Tt),
which is assumed to be constant over time. As before, we
denote with ng) = [sgt)} kEF the aggregate state of all passive

objects at time ¢.

Vehicles are equipped with three distinct types of sensors.
The first is a GNSS receiver, providing an estimate of the
vehicle’s state s\, modelled as

it
(GNSS) — pg(GNss) (A)Jr (GNSS)

2

~ N(02x2 ,RE?NSS)) € R?*! is a zero-
(G Ss) _ (GNSS)212

GNSS
where n( )

mean Gauss1an noise with covariance R,
and H(GNSS) = [I,0,,5] € RZ*4 From (2), we define

the GNSS likelihood function as p(o((;’NSS |s(.A)), and with
the aggregate GNSS measurements

(GNSS) (GNSS)]
2 t i
of all the vehicles at ame t.
The second sensor refers to an active sensing technology
for sidelink positioning offering relative agent-to-agent (A2A)

location measurements for any pair of vehicles (i,7) € &

oAA) _ (arn) (&) _ M) | p(a2n) )
75 7y 1,7,

where H(AQA) = [I302x2] € R** and nE‘?iA)

N (Ozxg, Rf it ) is a zero-mean Gaussian noise with covari-
ance R(/ﬁA) (AQA) I,. Additionally, agents have the ca-

pability to communicate with their neighbors to share location-
related data.

The third sensor type is a passive technology (e.g., RADAR,
LIDAR, camera, or any combination), used by vehicle ¢ to
detect a set of passive objects F; ; C F in proximity at time
t, and produce agent-to-target (A2T) measurements for each
object k € F; ; as

(A2T) _ n(A27)

A2T) (A) (T) 4
opry = HW s —s )+ “)
where HA2T) = [I,0545] € R?>** and nEiQtT) ~
2% 2, is a zero-mean Gaussian noise with covari-
ance Rﬁﬁr) (A2T)212.

We  denote  with  p(o S?QtA)|s1t), g’?) and
p(637 1 siT))  the  A2A and AT likeli-
hoods respectively.  Moreover, we denote  with

T T T
0= [ongSS) oEﬁQA) ogﬁzT) }T the vector of all
a\(//e_l\iglit))le mezisng)ements of ve(lxg% 1 at(AtQi%r)le t, where
o, = [0} ]je,/\/'“ and o; = [oi ks }ke]:i.t' The

total number of unique A2A and A2T measurements

at time ¢ is defined as Nt(A2A) = YN [Nis| and
NATD = S N | Fil, respectively. Note that the A2A
measurements are not subject to measurement-origin

uncertainty, i.e., it is not requested to perform any data
association algorithm for pairing them, as the enabling
technology is assumed to be active. On the other hand, the
A2T observations are unlabelled, as it is unknown which
object gives rise to a measurement, being them produced by
a passive sensing technology (e.g., RADAR or LIDAR). In
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this work, we assume that data association has already been
performed at the vehicles (using, e.g., methods [53]) and that
each A2T measurement has been correctly labeled with the
originating target. We consider perfect data association as we
aim to derive the best-case performances on the achievable
accuracy of data-driven ICP and compare it with conventional
Bayesian ICP in the same conditions. Interested readers can
refer to [46] for details on data association and their impact
on inference algorithms.

III. BAYESIAN FILTERING

In this section, we describe the Bayesian filtering solution,
under the ICP framework, and then we highlight its main
drawbacks and improvements.

A. Centralized Implicit Cooperative Positioning

The objective of ICP is to concurrently estimate the state of
all vehicles and passive objects in the network. To this aim,
we define the set of all available measurements at time ¢ as

0o; = Hst +ng (5)
(A2A) (A2T)
Where 0; = I:oi,t} Ry c R(2N+2Nt +2N,; )><1
H is the matrix modeling the relation to the states,
T
defined as in [32], and s, = [s gA) (T) }T c R(4N+2K)><1

bl

is the aggregated state of the system n, ~ N (0, R;)
is the overall measurement noise with covariance
R, = Dblockdiag(RI“™% R™ R where
REGNSS) _ blOdelag(R(GNSS) R(GNSS)),
RN blockd1ag<R(A2A) RE@QA‘;{) ) with
the /¢-th entry given by R(AQA) = Ej\feAt), and
RA — blockdiag( lf‘fT) jo(iﬂ)) with
A2T A2T
Ré ) ’Eg,ke,l)f'

The overall state estimate s, is obtained through the
minimum mean square error (MMSE) estimator as

5; =E{s01.4} = /St p(3t|01:t) dsy

t .
where 01.; = [ot/] poq 18 the set of all aggregated measure-
ments up to time ¢ and p(st |01:t) is the posterior PDF defined

as [95]

p(3t|01:t) X p(ot|3t) /p(st\st—l) p(St—1|O1:t—1) ds;_1.
(7

We denote with b(si,t|01:t) £ p(s,;7t|01:t) the marginal

posterior PDF, also called belief of agent i. Given that all

the measurements are mutually independent, the likelihood
function of s; is computed as

(6)

plotn) = o) IT T roli2V1e.o80)
i=1j€EN; ¢
XH [T »(eliZ"1sh) st - ®)

i=1keF;
For notation purposes, we will denote the likelihood function
also as O(ot|st) £ p(ot|st). In case the dynamic and
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Fig. 2. Convergence conditions in ICP methods.
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measurements models in (1) and (5), respectively, are linear
and with a Gaussian noise, the state estimate in (6) reduces to
a Kalman filter (KF) as described in [32], [46], with efficient
resolution in matrix form.

B. Limitations of Bayesian ICP Methods

The centralized ICP approach is impractical for extensive
networks due to the following major limitations: the single
central computing unit representing a point of failure, and its
computational complexity growing cubically with the number
of vehicles and passive objects [32]. To overcome such lim-
itations, distributed or consensus-based ICP algorithms have
been studied in the past [34]. However, their convergence to
the centralized solution is guaranteed only in acyclic (i.e., tree-
structured) factor graphs. Moreover, even in case of conver-
gence, the result would be optimal only with Gaussian and
linear models (i.e., in (1) and (5)). In all the other cases,
optimality is not guaranteed. In Fig. 2 we summarized all
cases and highlighted those where improvements could be
provided by new data-driven designs. We point out that in
real-world dynamics, the factor graph is usually not acyclic
and the models are typically neither Gaussian nor linear.

The aim of this paper is to address the gap by proposing
a new decentralized data-driven solution to the ICP problem
suited for non-linear non-Gaussian models, overcoming the
limits of parametric Bayesian implementations based on EKF

or particle filter (PF) highlighted in Fig. 2. The proposed
distributed method also incorporates a data-driven optimiza-
tion of the cooperation graph by making the agents actively
and opportunistically select the cooperating neighbors so as
to minimize the communication signaling. In particular, to
address the limitations of conventional ICP solutions, we adopt
neural networks (NNs)-based models, which are able to learn
whatever non-linear function is hidden in the data thanks to the
universal approximation theorem. Specifically, a RNN learns
the non-linear motion and measurement models, whereas a
multi-layer perceptron (MLP) learns the non-linear relation
between link activation and state estimate. Moreover, NNs
have proven effective even in non-Gaussian settings [53], given
their ability to model complex probability distributions without
assuming any specific form. The centralized ICP method
reviewed in this section will be used as a benchmark to assess
the proposed method.

IV. MARL FOR COOPERATIVE POSITIONING

In this section, we first introduce the MARL framework
(Sec. IV-A) that will be used later for the design of the ICP-
MAPPO solution (Sec. IV-B). The ICP-MAPPO execution
and training schemes are reported in Sec. IV-C and IV-D,
respectively.

A. MARL Framework

We model the cooperative MAS as a finite-
horizon Dec-POMDP [75] defined by the tuple
W, 8, ATy, T,0,0,R,v,H). We recall that the set V
refers to the cooperative agents, while the sets S and
A denote the state and action spaces, respectively. Tp
is the initial state distribution at time ¢t = 0, while
T(s¢|si—1,a:) = p(si|si—1,a) is the state transition PDF
that, differently from the Bayesian-filtering system model
in Sec. II, now also includes the joint action realization
a; = [aivt}z‘ev € A and the joint state s; € S. At
each time ¢, the agents receive the joint observations
or measurements o, € (O which are sampled from the
distribution O(o¢|a;—1,s¢) = p(o¢|a;—1, s;). Note that here,
(8) is also function of the previous joint action of the agents
a;_1, thus generalizing the concept of Bayesian-filtering.
R(s¢,a;) = r; € R denotes the instantaneous shared reward at
time ¢ obtained from the reward function R, while v € [0, 1)
and H are the discount factor and time horizon of each
episode, respectively.

Since the states and rewards are not directly ob-
servable by the agents (partially observable MDP), each
agent i keeps track of the so-called histories defined as
hiit=h;s= [(aw,l,oi,y)}:,:l. Note that the histories
are a generalization of the aggregated measurements up to
time ¢ in (6). Given a new observation o; ¢, the state estimates
8;+ are produced by MMSE criterion from the belief PDF
b¢(3i7t|0i,t7ai,t71;hi,tfl) = Pz/;(si,t Oi,t,ai,tq,hi,tq) pa-
rameterized by ). Moreover, agents adopt a policy
mo(a; i) = pe(a;|hi,) defined by 6 to obtain the action
a;; from histories h; ;. A full comparison between Bayesian
filtering and RL (i.e., its generalized version) can be found in
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Fig. 3. Comparison between Bayesian filtering and RL.

Fig. 3. By defining the reward-to-go Ry = S0 4"~y as
the cumulative discounted reward from time ¢ to the end of the
episode, the objective of the MARL problem is to maximize,
over the policy 7, the expected cumulative discounted reward
from the beginning of the episode

max J(7) = maxE{Rg} )
which usually translates into optimizing the parameters of the
policy as 8* = argmaxgy J(mg), with 7, representing the

optimal policy.

B. MARL Solution to the ICP Problem

In standard Dec-POMDP, each agent only knows its lo-
cal actions and observations, thus resulting in possible non-
stationary learning problems from each agent’s perspec-
tive [96]. By training independent learners to optimize the
team reward (i.e., concurrent learning), we induce a change in
the dynamics of the environment as teammates continuously
adapt their behaviours throughout learning. On the contrary,
whenever a fully connected graph with communications is
present, the Dec-POMDP collapses to a centralized POMDP,
resulting in higher complexity and communication inefficien-
cies [89], [97], exactly as in centralized ICP. To solve the
issues of independent and centralized training-execution, the
state-of-the-art works exploit the so called centralized-training
and decentralized-execution paradigm. This framework per-
mits to learn the policies in a centralized way and then deploy
them in the network graph for decentralized execution [85],
[87], [98].

While this approach solves the problem in standard MARL
algorithms, in the context of ICP, having access to the neigh-
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bors’ measurements would allow the positioning accuracy to
be significantly improved. Indeed, the objective of ICP is to
minimize over the belief b the error on the state estimate as
. . 12
mbmJ(b) 7mb1nIE ;HstfstHQ (10)
Therefore, we here propose to define as actions the agent’s
selection of the communication links to the neighbors to
cooperate with. This allows to optimize the communication
efficiency with respect to the centralized solution. Formally,
we define the following Dec-POMDP:

1) Agents: The agent is identified by vehicle ¢ € V that
composes the connected network.

2) Actions: The action of agent ¢ at time ¢ is
aj; = [ai7j7t];\/:1, where a; j; € {0, 1} represents the Boolean
decision of agent ¢ to communicate with agent j.

3) States: Only the states of the vehicles sgA)
ered, while the target states s,gT) are implicitly learned by the
NN through the hidden features. Indeed, the system does not
output or keep track of the states of the targets, since they are
not needed as in the ICP Bayesian filtering formulation. In
other words, the ICP-MAPPO model just outputs the predicted
states of the agents, while the targets’ states are contained in
the hidden space, i.e., histories. Therefore, from now on, we
indicate with s; the state of the agents sgA)

4) Observations: GNSS, A2A, and A2T measurements de-
scribed in Sec. II are the observations used in the Dec-POMDP
modeling, as they are the only output returned by the world
at inference time.

During the centralized training, the agents learn the rela-
tion between histories-actions, i.e., policy optimization, and
histories-states, i.e., belief optimization, while having access to
the full observable state s; and measurements o,. Conversely,
during the decentralized execution, the agents decide how to
modify the network graph to achieve the best trade-off between
positioning accuracy and communication efficiency. We call
this approach centralized-training and dynamic-decentralized-
execution, as during execution, according to the agents’ ac-
tions, the coordination graph may vary, passing from fully-
connected to fully-decentralized according to the agent’s de-
cisions.

are consid-

C. ICP-MAPPO Execution Scheme

For belief and action prediction, we propose to employ long
short-term memory (LSTM) and MLP, respectively. In Fig. 4,
we show a compact representation of the execution within each
agent. In particular, the NN functions are defined as

(11)
(12)
where 0, ; is the ordered vector of all measurements of agent
i at time ¢ defined as in Sec. II, @;; = [a; ;] ].V:l includes the
sampled actions from the policy distribution adjusted with the
feasibility of the network connectivity as

_ if jeN;
Qi jp = { L e

otherwise

-~ b _ — b
it hiy = by(8it]0ie, @iz—1,h7 1)

a;, ~ mo(a;|hY,)

@g,5.t

i (13)
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and hbt are the hidden features of the belief LSTM which
contain a compressed representation of the histories of agent
1 and all selected neighbors at the previous timestep

b h?, + djev h’?,t L(a; . ==1)
ot L+3 ey L@ e ==1)
where 1(-) is the indicator function that returns 1 if the

condition is true and 0 otherwise. We point out that the hidden
features hbt include not only past actions and measurements

but also the implicit state estimates of the targets s A( ) , which
are never explicitly predicted by the system for output space
complexity reduction.

The key rationale behind the proposed execution scheme
is the following. We employ the average operation in (14)
to avoid gradient divergence over the timesteps. Furthermore,
the action decision at time ¢ in (12) is mainly based on the
preV1ous timestep information hP” it—1» as there is no way for

(14)

agent ¢ to know a priori the measurements of its neighbors
h;’t ,¥V7 € V, in order to activate the communications between

them. Moreover, the actions a;; are given as input to the
belief LSTM for two main reasons. First, the information
about which agents were selected for measurements fusion
is necessary to coherently predict the state estimate. Second,
the negative action values imposed by the lack of possible
connectivity permit each agent to implicitly learn its index or
identification. In this way, the scalable and efficient parameter
sharing approach for training one single NN [89], instead of
agent-specific NNs, can be combined with agent differentiation
by index learning.

D. ICP-MAPPO Training Scheme

For the reward definition, we propose to use a function that,
looking at the future timestep, rewards the actions that gave
a predetermined improvement $ on the positioning accuracy.
In other words, each agent ¢ tries to answer the following
question: if T had chosen agent j' instead of agent j, would
the performances have improved? This is formalized as

-1 if H-St - gt”i - H3t+1 - gt+1H§ <-B

re=Q 41 if [[se— ) — [|ser — Sl > 8

=~ < s =Bl llseen = Beall; < 8
15)
where (3 is a hyper-parameter which regulates the improvement
step. At the beginning of the learning, if the improvement is
negative and bigger than (3, the reward is negative as the actual
agent selection worsen the positioning accuracy. On the other
hand, if the improvement is positive and greater than 3, the
reward is +1. Finally, when the learning starts converging and
the improvements become smaller, we introduce a long-term
reward of +2. Note that, while in conventional Dec-POMDPs
the reward directly depends on the actions, in the proposed
system the effect of the actions’ choice can be assessed only
at the next timestamp and only by measuring the positioning
error.
Regarding the type of MARL algorithm, we opted for PO
over Q-learning-based methods. This is because Q-learning

+2 if

algorithms combined with DL have no guarantees of conver-
gence and retain a lot of bias (i.e., inaccurate state-action value
or Q-value). On the contrary, PO algorithms retain very low
bias since they directly optimize the objective function in (9)
and have been proven to outperform Q-learning methods in
MARL systems [87]. Moreover, while off-policy RL algo-
rithms use historical data to learn the policy, in the context
of CP, where state estimation is crucial, it is essential to
utilize the most up-to-date policy available since the action
sampling (i.e., radio link activation) directly influences the
positioning performances. Despite PO algorithms having an
intrinsic high variance, i.e., they require a lot of samples to
converge, this can be mitigated by the learning of the value
function, either V™ (s;) or Q™ (st,a:), which estimates the
long-term reward given a specific state or state-action pair,
respectively. Specifically, we employ the state value function
defined as

V7 (st) = E{R¢|st = 81}

= Farorsiinr{ Rlsi,a) 9V (s041) }. - (16)

Usually, V™ (s;) cannot be directly computed due to the curse
of dimensionality and thus it is estimated by an additional NN
Ve (st) = Vp(st), with parameters ¢ which are only employed
during training.

In standard single-agent RL frameworks, the policy opti-
mization problem is usually defined with the introduction of
trajectories © = (s, ao, - ..,SH,ay) by maximizing

J(70) = Exnpirirg { B(®) |

m

Z Np(st‘ﬂ'B)vatNﬂe(at‘st){,‘Yt R(St’at)} (a7

t=
where R( ) = Rg is the reward of trajectory -,
p(T|m) =Ty Ht:Bl T(8t41|8t, at) w(at|s:) is the PDF of an
H-step trajectory, and p(s:|m) is the state marginal of the
trajectory distribution induced by policy 7. Standard REIN-
FORCE PO algorithms [99] update the policy parameters in
(17) in the direction of Vg J(mg), which can be written as

(see Appendix A)
H—

Vo J(me) = E(st,at>~p(st,at|we){ Ve log (7e at\st))At}
t=0

,_n

(18)
where p(s;, a;|mg) is the state-action marginal of the trajectory
distribution induced by policy 7 and A; = Ay(s¢,a;) is the
generic advantage function at time ¢ [100], which quantifies
the convenience of taking a specific action a; in a given state
s;, compared to the average action’s expected return for that
state.

During successive optimization steps of (18) within the
same trajectory, where the objective is to maintain proximity
between new and old policy parameters, even minor variations
in the NN weights can lead to significant differences in perfor-
mance. Consequently, a single unfavorable optimization step
can drastically deteriorate the policy’s effectiveness. Recent
state-of-the-art methods, e.g., trust region policy optimization
(TRPO) [101] and proximal policy optimization (PPO) [102],
tried to solve this problem by taking the largest gradient
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Fig. 4. Dynamic-decentralized-execution scheme of the proposed ICP-MAPPO algorithm.

step size possible to improve performance, while maintaining
constraints on how close the new and old policies (i.e., mg_,, at
previous train step) are allowed to be. The constraint in TRPO
is enforced by Kullback—Leibler (KL) divergence and the
parameters are obtained by maximizing the surrogate objective
function as

_mo(a|se) Ay(se,a t)}
T9,14 (@t]St)

SihIEQAw(sAne>{IDKL(WH(WSt)HWBMd(WSt))} <e

19)

which resulted in a second-order optimization method. On the

contrary, PPO and its recent multi-agent version MAPPO use

a much more efficient first-order method that exploits clipping

to remove incentives for the new policy to get far from the
old policy.

0= argrenax E(St,at)NP(St,atl‘ﬂ'e){

In this paper, we adopt three loss functions: L(¢) and L(0)
derived from the MAPPO scheme to train the state-value and
policy NN, respectively, and L(v)) to train the belief NN.
mg and V are called actor and critic, respectively, since the
actor is responsible for selecting actions based on the current
policy, and the critic evaluates the quality of these actions by
estimating the value function. In Dec-POMDP, the critic Vy is
also dependent on the history of action-observation pairs and
thus it is usually modelled with a RNN as

Vo(siu hYy_1) hYy = Vip(sia, hY,_y) (20)

where h‘z\'{t are the hidden features of the critic. Given a
trajectory of length L, (subset of the horizon length H), L(¢)
is defined to perform regression on the rewards-to-go as

L
1 ks ~
L(¢) = NI > { max ([Vd:(su, hYy) — Rz]Q,
T iev e=1
~ N 2
{Clip(V¢($i7e, hz\'fffl)a V¢old (Si,éa hvi\,/éfl)v 6) - Rf} ) }

21
where the clip prevents the value function from radically
changing between iterations, and it is defined as

clip(A,B,e) = min (max (A,B — e),B + e)

where € is the clip coefficient.

(22)

The actor g is also trained with clipping to discard the KL

constraint in (19) by minimizing
L,

1 mo(aielh?,) ~
L(O) = ——— n | A
0= 55 22 win (2 et
hr)

We(ai,z N .
(7%@14“’214)7 1, e) AM) + aS(wg(. \h”,))
(23)

where A\i’g = Rg—ffd)old (84,0, hy,_,) is the advantage function
estimate, S(px) = Exwp, {— log (px(:c))} is the entropy func-
tion which encourages the exploration by inducing stochastic
policies, and « is the temperature hyper-parameter which
balances the trade-off between exploiting the best actions and
exploring new actions. Finally, the beliefs by, adopt a MSE
loss function to minimize J(b) in (10) as

1 L
L) = 7= 22 2 18ie = suall

(24)

T iev =1
All the NNs are trained with maximum likelihood
estimation (MLE) criterion. However, while

by (8i4]0it, @i -1, By, ) directly outputs 8 ¢, mg(ai+|hY,)
predicts the probability of communication among agents
through sigmoid activation functions, from which actions
a;; are sampled. The full training algorithm can be
found in Algorithm 1, where we defined a transition as
Tt = (8t7 O¢, h?, ’TL?, hy, Qay, C_lt, Tty St+1,0¢+1, §t+1)' Since
our approach combines the usage of passive targets to improve
the position estimate and MAPPO MARL to perform an
efficient agent selection, we call this algorithm ICP-MAPPO.

The main characteristics of ICP-MAPPO are the following.
ICP-MAPPO is a low-bias on-policy algorithm since the data
used to train the agents are collected from the policy currently
being learned or improved. For value regression, we adopted
a centralized value function that takes as input extra global
information (i.e., the states) not present in the agent’s local
observation to accurately estimate the values state. The beliefs
are computed as in model-based value estimation (MBVE) RL
[103], [104], leveraging the learned dynamics to predict the
state estimate. This additionally reduces the variance of the
PO method without introducing additional biases by avoiding
performing rollouts [105]. Finally, as opposed to conventional
MARL algorithms, the rewards are not directly dependent on
the action, but only implicitly through the beliefs of the next
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Algorithm 1 Implicit Cooperative Positioning Multi-Agent
Proximal Policy Optimization (ICP-MAPPO)

1: Input: actor, critic and belief parameters 0 = 0,4,
¢ = Gola, and .

2: for each training step n = 1,2, ..., Ngiep do

3: Initialize empty batch B = {} and trajectory 7 = ||

4 Initialize histories hXO and hP?, for critic and beliefs

5: Initialize state estimate 39

6: fort=1,2,...,H do

7

8

9

for all agents 7 € V in parallel do
Sample action a;; ~ ma,,, (@i :lhP,)
Send h}, and receive h?, Vj € N,

10: Get value estimate Vi, (Si ¢, h’thl) with (20)
1 Compute @;; and h}, with (13) and (14)

12: Observe Sit+1, 04 t+1

13: Get state estimate §; ;1 with (11)

14: end for

15: Observe r; and store 7; in T

16: end for R

17: Compute advantage estimate A; ; V¢ and agent ¢ on T
18: Compute reward-to-go R; for each V¢ on 7

19: Split trajectory 7 into chunks of length L.,
20: for each ¢ =0,1,...,|H/L.| do

21: B=BU {Tt,At7Rt foT

22: Adam update of ¥ on L(v)) with data {Tt}fifT
23: end for

24: for each mini-bathh do

25: Sample {Tg}[;l ~ B

26: Adam update of @ on L(6) with data {T@}ZL:Tl
27: Adam update of ¢ on L(¢) with data {Tg}Zl
28: end for

20: Boa < 0, Pola — @

30: end for

timestep. This permits to effectively decouple the evaluation
of actions based on the improvement of state predictions rather
than immediate outcomes, focusing on long-term strategic
benefits rather than short-term gains.

V. SIMULATION EXPERIMENTS

In this section, we first introduce the scenario and the train-
ing procedures, and then we describe the baseline methods,
and the main simulation results.

A. Simulation Setup

To evaluate the performances of the proposed ICP-MAPPO
algorithm, we simulate a C-ITS scenario with the CARLA
software [94] in an urban map (i.e., Town02 of CARLA)
that spans an area of 200 x 200 m?2. Fig. 1 shows a bird-eye-
view representation of the map. CARLA takes into account
inter-vehicle dynamics, such as acceleration, braking behavior,
and collision physics, as well as communication constraints
given by the environment. Within the area, 20 CAVs move
for 1500 timesteps sampled every 0.2's, while 72 fixed objects
(poles) are detected by the vehicles if in line-of-sight (LoS)

and within a sensing range of 70 m. The same coverage area
applies to A2A measurements. For the communications, we
only consider the direct LoS path, as if the vehicles were
equipped with LIDAR technology that could be blocked by
obstacles such as buildings or other vehicles. The absolute
driving speed adopted in the testing scenario ranges from 0
to about 60 km/h, with a mean and standard deviation speed
of 0.2 km/h and 14 km/h, respectively. We point out that the
motion models of the vehicles are not linear and that the factor
graph to solve the distributed ICP method contains cycles. For
the GNSS, A2A, and A2T observations, measurement errors
are simulated as additive independent Gaussian noises with
standard deviations of 2m each.

For the training and testing of the ICP-MAPPO algo-
rithm, we create two different simulations each composed
of H = 1500 timesteps. Model training is performed over
Nstep = 2000 episodes (or training steps), each characterized
by a different realization of the measurements. For testing,
40 Monte Carlo (MC) evaluations are considered, unless
otherwise specified. During training, we adopt a trajectory
length L, = H/2 to use at most 2 mini-batches, as suggested
by [87], [106]. The entropy, reward and clipping coefficients
have been chosen to be a = 0.01, § = 0.05 and ¢ = 0.2,
respectively. Note that 5 = 0.05 would correspond to an
improvement step of the reward function of 5 cm in a non-
standardized state scenario. The discount factor is v = 0.99,
while the Adam [107] learning rate is ;1 = 10~° with standard
hyper-parameters.

Regarding the NN architectures, we adopt a critic network
with three layers: a fully-connected (FC) linear layer with 256
neurons, a gated recurrent unit (GRU) with hidden size of
256 and a final FC linear layer. The actor is an MLP with
two hidden linear layers of [128, 64] neurons and rectified
linear unit (ReLU) activation functions, and an output layer
with sigmoid activation function. Lastly, the belief network
employs two bidirectional LSTM layers of 256 hidden neurons
each and ReLU activation functions, followed by a Maxout
unit with 128 output features and two linear layers of [64, 32]
neurons.

B. Computational Complexity and Latency

To access the real-time processing capabilities of the pro-
posed method in fulfilling the CAVs requirements on latency,
we here investigate the computational complexities and com-
munication delays of the proposed ICP-MAPPO solution with
respect to the ICP algorithm. We specify that the number
of floating point operations (FLOPs) for Vg, mg and by,
are 0.82 - 105, 0.54 - 105, and 11.3 - 10°, respectively. For
comparison, the computational complexity of particle-based
ICP methods is estimated with O(Ny,, - N - K - N,,), where
Npmp and N, are the number of message passing iterations
and particles, respectively. The experiments are performed on
a workstation machine with Intel(R) Xeon(R) Silver 4210R
CPU @ 2.40 GHz, 96 GB RAM, and a Quadro RTX 6000 24
GB GPU, capable of achieving about 16.3-10'2 floating point
operations per second (FLOPS) with just CPU performances.
This implies a maximum latency for sample-inference of
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around 1 us, which is expected to be truthful and accurate
since the computational capabilities of CAVs are planned to
far exceed our workstation capabilities with more than 4-10'°
FLOPS for L5 SAE level [108].

When considering the communication delays with a hid-
den LSTM size of 256 bytes for ICP-MAPPO and about
Nmp = 1000 particles (each with 2 bytes for 2D position
and 1 byte for the weight) in the ICP method, the data
transmission would require approximately 1 and 10 packets,
respectively. This estimate is based on 5G vehicle-to-vehicle
(V2V) communications with a typical packet size of 300 bytes.
Two communication scenarios are possible: direct V2V [109]
or vehicle-to-network-to-vehicle (V2N2V) [110] when under
cellular coverage. For direct V2V communication, the end-to-
end (E2E) packet latency is around 1 ms [109], resulting in 10
ms for ICP and 1 ms for ICP-MAPPO. In the V2N2V case,
assuming the distances and scenarios described in [110], the
E2E packet latency is around 4 ms, resulting in 40 ms for ICP
and 4 ms for [CP-MAPPO. We note that the ICP E2E commu-
nication delay exceeds the 5 ms latency requirements of fully
CAVs [111] in both scenarios, especially if a message passing
procedure with multiple belief exchanges is considered. On the
contrary, the ICP-MAPPO method meets the stringent latency
requirements needed for fully CAVs.

C. Baseline Methods

As benchmark algorithms, we consider the following im-
plementations:

1) KF-GNSS: Non-cooperative single-agent GNSS-based
KF only using GNSS observations and perfect knowledge of
the measurement standard deviation o(GNSS) = 2m. For the
motion dynamics (1), we adopt a constant velocity model with
standard deviation of the Gaussian-distributed velocity driving
process calibrated on the data and equal to 0.5 m/s2.

2) ICP: Centralized ICP method from [32] with known
A2A and A2T standard deviations, i.e., o(A24) = 5(A2T) —
2m, and same motion model as for the KF-GNSS. Note
that the use of the exact measurement statistics in generation
and tracking allows to obtain the optimal performance (i.e.
with no errors due to mis-modeling). Here the network of
agents is fully-connected, i.e., all the agents share the same
measurements.

3) Ego ICP-MAPPO: Proposed ICP-MAPPO method, with
no-cooperation, i.e., only comprising the belief LSTM and
imposing no connectivity with other agents, ie., G;;; =
-1Vt e{0,....,H—1},i € V,j € N;;. In this way, each
agent has to rely just on its measurements without performing
aggregation of the neighbors’ hidden features.

D. Results

1) Training performances: In the first assessment, we aim
at verifying the convergence of the proposed ICP-MAPPO
algorithm during the training episodes. In Fig. 5, 6 and 7,
we report the mean belief LSTM loss, reward, and state
value function, respectively, along with the 5-95 percentile
as error bounds. The metrics are computed among agents
and trajectory over the whole episode. From the figures, we
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Fig. 6. Achieved reward varying the number of training episodes.

notice two distinct phases of the training: before and after
reward convergence. In the first phase, i.e., before episode
250, the exploration is encouraged, leading to a much higher
variability of the reward and a very rapid decrease of the
LSTM loss function. After passing into the second phase, the
positioning improvement becomes smaller, with a consequent
convergence of the reward to the value of 2. Notably, also
the mean value function converges after about 250 episodes,
but with a high variance between agents and trajectories. This
may be indicative of a rich and complex environment where
the optimal policy may not be static, but rather dynamic
and contingent on the interactions between agents and the
environment. Indeed, the complexity of the state, e.g., each
agent has a different trajectory in the space, can lead to a
wide range of value function estimates as different states are
visited with varying frequencies.

2) Cooperative positioning testing: This experiment has the
objective of comparing the positioning capabilities of ICP-
MAPPO with respect to the baselines in an unseen testing
trajectory. To this aim, Fig. 8 shows the root mean square
error (RMSE) on the vehicle position at each timestep of
the trajectory (Fig. 8a) and the corresponding cumulative
density function (CDF) of the absolute error (Fig. 8b). The
RMSE is computed among the agents at the single timestep,
while the mean and error bounds are computed within the
MC evaluations. From the results, we observe that the Ego
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Fig. 7. Mean value function varying the number of training episodes.

ICP-MAPPO, which only relies on GNSS measurements,
converges to the KF-GNSS method, indicating a correct usage
of the observations to estimate the position. Passing to the
cooperative methods, we notice a higher speed of convergence
of ICP-MAPPO with respect to the conventional ICP. This
is mainly due to the learned vehicles’ dynamics and to
the effective combination of neighbors’ observations. As a
consequence, the ICP-MAPPO algorithm outperforms the ICP
method in terms of absolute error by 21%, passing from a
median of 42cm to 33 cm.

3) Generalization capabilities: This experiment aims at as-
sessing the generalization capabilities of the proposed method
in unseen scenarios. To evaluate the environmental dependence
of our model, we tested the pre-trained ICP-MAPPO on a
different CARLA map, specifically Townl0. In Fig. 9, we
plotted the position RMSE on testing trajectories in both
Town02 (used for training) and Zown 0 (unseen environment),
varying the number of passive objects in the respective map.
We shall notice that the numbers of poles in Townl0O and
Town02 are 146 and 72, respectively. Since ICP-MAPPO was
trained with a maximum input size of 72 measurements, we
adjusted the number of targets up to 72 for this experiment.

The results in Fig. 9 confirm that, even in the unseen
scenario, a higher number of vehicles increases the positioning
accuracy thanks to the cooperation among vehicles. Com-
paring the results on Town02 and TownlO, we note that in
the limit-case of no measurements shared among agents, the
performances in the two scenarios coincide. On the contrary,
when the number of features increases, the performances on
the unseen scenario are slightly lower (i.e., about 10 cm)
despite the completely new environment.

4) Communication efficiency: In this last assessment, we
test the effectiveness of the policy choices in terms of coopera-
tion power and communication efficiency. In Fig. 10 we report
the position RMSE at convergence (Fig. 10a) and the mean
number of selected agents from the policy (Fig. 10b) varying
the maximum degree of connectivity allowed in the network.
In Fig. 10a we observe an intuitive inverse relation between
the maximum cooperative agents and the RMSE, with a rapid
decrease under 1 m of RMSE with just 2 agents. Notably, after
8 cooperative agents, the improvement in RMSE is negligible,
with convergence to about 40 cm. To study this behaviour, in

KF-GNSS
— ICP
2100 Ego ICP-MAPPO
= ICP-MAPPO
m
=
a4
=]
.S
> 100
o
~
0 200 400 600 800 1000 1200 1400
Timestep
(@)
1.0
KF-GNSS
; — ICP
08 Ego ICP-MAPPO
' ICP-MAPPO
0.6
=8
a
@)
0.4
0.2
C"](.)0‘1 10° 10! 107
Absolute vehicle positioning error [m]
(b)

Fig. 8. Testing performances on the cooperative scenario. (a) RMSE of the
position over time for the single-agent KF-GNSS, ICP, proposed single agent
and cooperative ICP-MAPPO. (b) CDF of the absolute error.

4.0

Position RMSE [m]

0.31 — Town02 (seen)
---- Townl0 (unseen)

0 6 12 18 24 30 36 42 48 54 60 66 72
Number of targets in the network

Fig. 9. RMSE on the position achieved by ICP-MAPPO varying the number
of targets (i.e., poles) in two distinct environments.

Fig. 10b we notice that the policy tends to select no more
than 9 agents for cooperation. This likely occurs because the
marginal benefits of additional cooperation diminish beyond
this point, leading agents to prefer collaboration with only
their closest neighbors. Indeed, incorporating data from dis-
tant agents that do not observe common targets results in
only slight enhancements in positional accuracy. Lastly, we
highlight that the ICP-MAPPO has higher performance than
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Fig. 10. Communication efficiency comparison between the ICP and the
proposed ICP-MAPPO methods. (a) RMSE on the position varying the
maximum number of cooperative agents in the network. (b) Mean number
of neighbor agents selected by the policy varying the maximum connectivity
of the graph.

20

the ICP method for the same number of cooperative agents in
the network.

To evaluate the trade-off between positioning accuracy and
communication overhead, in Fig. 11, we plot the mean number
of A2A links, considering varying numbers of cooperative
vehicles in {2, 6, 10, 15, 20}. We observe that with a smaller
number of cooperative agents, such as 2, the ICP-MAPPO
tends to employ all available agents, leveraging neighbors’
measurements to rapidly reduce GNSS uncertainty. Con-
versely, with a higher number of agents, particularly beyond
10, the benefits of additional cooperation decrease (as shown
in Fig. 10a). This is because only the closest neighbors with
a significant number of shared targets substantially enhance
positioning accuracy. Notably, with 10 and 20 agents, ICP-
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Fig. 11. Mean number of A2A connections in the network graph, for the ICP
and the proposed ICP-MAPPO algorithms, and different maximum number
of cooperative agents.

MAPPO reduces the number of links by 30% and 60%,
respectively, compared to ICP.

VI. CONCLUSION

In this paper, we addressed the problem of CP in a dis-
tributed network of agents that exploit passive detected targets
to improve the positioning accuracy according to the ICP
framework. We provided a generalization of the Bayesian ICP
solution by exploiting the MARL approach, which enables the
dynamic optimization of the A2A links used for cooperation
accounting for partial observability of the state. We presented
a novel ICP-MAPPO algorithm where the agents actively
select the neighbors to communicate with by following their
optimized policy. This allows to minimize the communication
overhead for cooperation, while improving the positioning ac-
curacy of ego-agent systems. The proposed solution is proven
to outperform single and multi-agent conventional approaches
thanks to DL-based states’ belief and policy models.

Realistic simulations of a C-ITS scenario created with
CARLA simulator demonstrate the superior performances of
ICP-MAPPO with state-of-the-art ICP methods, both in terms
of positioning accuracy and efficiency of communications.
The cooperation is indeed intelligently exploited to enhance
the performances and, at the same time, the communication
efficiency, by selecting ad-hoc neighbors that are relevant for
the task. The benefits of the approach look promising for
applications where groups of agents have a common inference
objective and predictions/decisions need to be taken based on
incomplete or uncertain data.

As future work, we envision the extension of the proposed
method to decentralized frameworks [112], incorporating also
data association of the targets to the measurements. Addition-
ally, performances could be enhanced by exploiting a higher
dimension of latent features within object detectors, instead
of filtering specific objects such as poles. This approach
would allow vehicles to exchange much more meaningful
information in a compressed manner. Furthermore, including
motion planning [113] could enable the system to not only
estimate but also modify the vehicles’ states according to their
destinations. Finally, introducing safe RL [114] by adding
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safety constraints related to communication resources, such
as maximum available bandwidth, would ensure that the
policies learned by the agents remain efficient under real-world
communication constraints.

APPENDIX A
PROOF OF (18)

To prove (18), we start by writing the gradient of the RL
objective function in (17) as

Vo J(mg) = VeEwp(rlwe){R } Vf’zp 7|m0) R(7)
=" Vop(r|re) R(7).

Now, we can rewrite the gradient of the trajectory PDF
Vo p(T|mg) using the log-derivative trick as

(AL)

Vo p(t|me) = p(7|me) Vo log (p(T|ms)) . (A2)
Given that the gradient of the log-trajectory PDF
Vo log (p(t|mg)) is
H-1
Ve log (p(T‘We)) = Vg log (To H T(3t+1|3t7at)7re(at|3t>)
t=0
H-1
= Vo log o(a; |st)) (A3)
t=0
we can rewrite (Al) as
Ve J(mo) Zp 7|76) Vo log (p(7|me)) R(T)
= Et~p(~r\7r9){v0 log (p(T|7T9))E('I:)}
H-1
= E(St@t)NP(St,at,‘ffe){ Vg log We(at‘st))
t=0
H-1
X Z vtR(st,at)} )
t=0
(A4)

Since the action a; at time ¢ only influences the future rewards
and not the past ones, (A4) can be equivalently rewritten as

H—-1
VO J(We) = E(st,at)Np(st,athrg){ Z VB log (We(atlst))Rt}

t=0
(AS)

where we used the reward-to-go at time ¢t

R, = f,l;tl At =t R(sw,ay), as opposed to Ry.

Since it can be proven that for any function

of the state B(s;) called baseline, we have that

EatNﬂe(GHSt){leOg(WB(at‘st)B(st))} = 0, then we

can reduce the variance of the PO algorithm, while remaining
unbiased, by subtracting the baseline from the reward-to-go
as

H-1
VG J(?‘(‘g) = E(St,at)NP St,llt|779 {

[Vg log (7o (a:|s:))
t=0

x (Ry — B(st))}}
(A6)

Finally, R; and B(s;) are usually substituted with their esti-
mates Q™ (s¢,a;) and V™ (s;), respectively, leading to the def-
inition of the advantage function A; = Q™ (s¢,a;) — V™ (s¢).
Recently, more advanced versions of the advantage function,
as the generalized advantage estimator (GAE) function ASAF
have been proposed in the literature [100] to regulate the
bias-variance trade-off, increase stability, efficiency, and obtain
faster convergence. We want to point out that usage of the
baseline and/or the estimate of R; are not necessary, and thus
any function Fj € {Rt,Q”(st,at), R: — V”(st),At,AtGAE}
is a valid choice.
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