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Abstract— Accurate location awareness is essential for various
context-based applications. This calls for efficient methodologies
to collect, communicate and process position-dependent mea-
surements, especially in situations with limited computational
resources. The soft information (SI) approach has recently
shown significant improvements in accuracy over conventional
localization methods. By developing efficient SI-based techniques,
it is possible to achieve higher precision also in case of stringent
computational constraints. This paper proposes new SI-based
localization techniques that utilize belief condensation and maxi-
mum entropy methods to reduce both communication burden and
computational complexity. In addition, the techniques presented
enable the use of generic sensing measurements, including those
taking discrete and categorical values. Through two case studies
involving time and angle measurements, we demonstrate how
the proposed approach can significantly improve localization
accuracy and computational efficiency.

Index Terms— Localization, soft information, belief condensa-
tion, machine learning, wireless networks.

I. INTRODUCTION

OCATION awareness [1], [2], [3], [4], [5] is an essen-

tial component in next-generation networks [6], [7],
[81, [9], [10] for a wide range of applications, including
autonomy [11], [12], [13], assets tracking [14], [15], [16],
crowdsensing [17], [18], [19], industrial IoT [20], [21], [22],
and network optimization [23], [24], [25]. The design of local-
ization systems and technologies needs to take into account
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multiple aspects. The network architecture, localization pro-
tocols, signal processing, and quality of measurements play
critical roles in terms of accuracy and coverage, as well as
in terms of latency, availability, integrity, and overall system
performance. The infrastructure complexity is also a crucial
aspect, as localization capabilities need to be integrated within
the existing infrastructure or the deployment of dedicated
connections or devices might be required. In recent years,
research has focused on integrated sensing, localization, and
communication, particularly in the context of beyond 5G
networks [26], [27], [28], [29], [30], [31]. While wireless
localization uses radio signals to estimate the location of active
devices, wireless sensing techniques use radio signals to detect
events or changes in an environment, including the presence
and location of passive targets. For example, radar-like sensing
enables the detection and localization of unconnected (i.e.,
passive) targets by considering signal reflections from the
target. As another example, sensing can be used to learn the
wireless environment (e.g., multipath propagation, non-line-
of-sight conditions) during the localization of active users.
In this paper, we adopt the term sensing measurements in a
broad sense to streamline the handling of position-dependent
measurements for both passive targets and active users.

The main goal of localization systems is to estimate the
target position (whether active users or passive objects) based
on sensing measurements and contextual data. Sensing mea-
surements are related to positional features such as range,
angle, and signal power, and are obtained through wireless
communication and signal processing among network nodes
[32], [33], [34]. Contextual data, which can include digital
maps, mobility models, and other relevant environmental infor-
mation, may be known a priori or learned over time. Sensing
measurements are influenced by various factors, including the
wireless environment and the characteristics of the transmitter
and receiver (e.g., antenna radiation patterns, receiver sensi-
tivity).

The measurements at different nodes are first communicated
over the wireless network, then processed and fused through
a localization algorithm to obtain the position estimate [9],
[35], [36], [371, [38], [39], [40]. For instance, fingerprinting,
triangulation, or multilateration techniques are commonly used
in both active and passive localization. Their implementa-
tion requires intra-node communication of single-value esti-
mates (SVEs) of positional features (e.g., each measurement
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corresponds to a single angle value or single range value). For
example, 5G positioning has introduced various localization
methods within the same technology framework. In this meth-
ods, the measurements can be collected either at UE-side or
gNB-side, and the processing can be carried out either in the
core network or locally at the radio access network (RAN).
These aspects impact several localization performance indica-
tors, including accuracy, availability, latency, and integrity.

In recent years, there has been a growing interest in the use
of machine learning (ML) to learn the operating environment
and channel conditions as well as to fuse different types of
data, thus further enhancing the localization accuracy [1], [41],
[42], [43]. In this context, the soft information (SI) frame-
work has recently shown to significantly improve localization
accuracy in multiple scenarios including those of beyond 5G
networks [44], [45], [46], [47]. While classical algorithms rely
on SVEs of positional features, SI-based techniques quantify
the probability of positional features for any possible value.
For SI-based localization, training data is collected at different
nodes to learn generative models as depicted in Fig. 1. Such
data-based learning approach is used to statistically character-
ize the sensing measurements.

In terms of accuracy, SI-based techniques excel over
SVE-based techniques since they can extract all the available
location information from measurements. Such richer infor-
mation is encapsulated into the SI functions and enables the
mitigation of wireless propagation impairments, as demon-
strated in several studies [44], [45], [46]. Nevertheless, the
usage of Sl-based localization faces two distinct challenges.
First, unlike SVE-based techniques, harnessing richer location
information necessitates the evaluation of continuous func-
tions, which are processed and communicated across various
nodes within the network. In several operation conditions,
there is a need to simplify both the SI learning process
and operation phase to enhance the overall efficiency of the
localization system.

Second, SI-based techniques have been exploited so far for
handling continuous valued measurements such as waveform
samples, time, and angle measurements. While most sens-
ing measurements are commonly characterized as continuous
random variables, it is worth noting that emerging sensing
technologies frequently incorporate categorical or discrete
measurements. One illustrative example is the measurement
of discrete angles with a limited set of values as a result of
beam sweeping approaches, which find application in wireless
communications and localization as well as radar and optical
sensing [48], [49], [50], [51], [52], [53], [54], [55]. The
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growing use of categorical and discrete sensing data calls for
adaptive learning approaches that can handle both continuous
and discrete measurement types. To achieve this, generative
models that seamlessly utilize discrete or categorical data are
crucial.

This paper extends the SI approach to reduce communica-
tion and processing loads while seamlessly accommodating a
variety of sensing measurements. To achieve this goal, we uti-
lize two methods previously proposed in the existing literature
but applied to other contexts, i.e., belief condensation (BC) and
maximum entropy methods. The BC method has been utilized
n [56], [57], and [58] to represent complex distributions in
filtering and tracking applications where traditional techniques
like Kalman filters and particle filters are inadequate. In this
paper, we use the BC method to alleviate the burdens of
communication and processing in SI-based localization. The
maximum entropy method has been considered in the litera-
ture [59], [60], [61], [62], [63], [64], [65] for assessing event
probabilities using distributions that maximize entropy within
specified constraints. In this paper, we use maximum entropy
models (MEMs) to extend the training capabilities and enable
the effective handling of generic data in SI-based localization.

The key contributions of this paper can be summarized as
in the following.

o We propose methods that use BC for obtaining multiple
value estimates (MVESs) of positional features, leading to
a more efficient communication and processing of the SI.

e We develop maximum entropy model (MEM)-based
learning that can incorporate generic sensing measure-
ments and rely on efficient convex optimization problems.

o We evaluate the effectiveness of the proposed approaches
in terms of localization accuracy and computational
complexity using continuous and discrete sensing
measurements.

The performance of the proposed approaches is evalu-
ated through sample-level simulations in two case studies:
(i) time-based localization leveraging time difference-of-
arrival (TDOA); and (ii) angle-based localization leveraging
beam-sweeping for direction of arrival (DOA). The results
demonstrate the advantages of the proposed methods in
different operating conditions and for different localization
algorithms.

The remainder of the paper is organized as follows: Sec. II
describes the problem formulation and gives a review of the
SI framework; Sec. III introduces the BC method for reducing
the dimensionality of SI and thus leading to more efficient SI
communication and processing; Sec. IV introduces the notion
of MEM-based learning for SI-based localization; Sec. V
evaluates the performance of the proposed techniques and
compares it with existing SVE-based and SI-based techniques;
and Sec. VI provides the main conclusion in the paper.

Notations: Random variables are displayed in sans serif,
upright fonts; their realizations in serif, italic fonts. Vectors
and matrices are denoted by bold lowercase and uppercase
letters, respectively. For example, a random variable (RV) and
its realization are denoted by x and x; a random vector and
its realization are denoted by x and x, respectively. Sets and
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random sets are denoted by upright sans serif and calligraphic
font, respectively. For example, a random set and its realization
are denoted by X and X, respectively. The function fy(x)
and, for brevity when possible, f(z) denote the probability
distribution function (PDF) of a continuous RV x; ¢(x; u, X)
denotes the PDF of a Gaussian random vector x with mean
p and covariance matrix X'; operator E; {-} denotes the
expectation of the argument with respect to distribution f.
For a matrix A and a vector a, the transpose is denoted
respectively by AT and aT. Given two vectors a,b € R,
a < b denotes that their ith components satisfy a; < b; for
i = 1,2,...,n. The function I4(z) = 1if z € A and
0 otherwise.

II. PROBLEM FORMULATION

In a localization problem, the goal is to estimate a state
vector x using a set of n measurements {y;}? ;, taken at a
single node or at multiple nodes in a network. For example,
nodes can perform multiple time measurements (e.g., round-
trip-time or time-of-arrival) or angle measurements (e.g.,
angle-of-arrival or angle-of-departure) with respect to the
target [66], [67], [68]. The state vector x is an array of
dimension D with components that can include the position,
velocity, and acceleration of a target. Each measurement y; is
an array of dimension M, with elements corresponding to a
raw waveform or position-related data such as power, timing,
and angle, which are usually extracted from the ith received
waveform (either at the same or a different node). In general,
the elements of y; can have values that are continuous (e.g.,
waveform samples and power measurements from the analog
front-end), discrete (e.g., angle or distance values with limited
resolution due to hardware limitations), or categorical (e.g.,
target classification or antenna type).

The measurements y; depend on the state vector @ through
a feature vector 6;, which is a function of state vector x, i.e.,
0;(x). In this paper, we focus on the case where the positional
feature takes scalar values.! For example, ; € R can be the
distance between the transmitted and the ith receiver or can be
the bearing angle between the transmitter and the ith receiver.

A. Localization Problem

By modeling the state vector as a deterministic unknown
parameter and assuming that measurements are independent
conditionally on 2, the maximum likelihood estimate (MLE)
of the state vector is [2]

& = argmax f ({y; }1—,|x) = argmaxH f(yilx)
* =1

n
= argmax [ | f(vil0:). (1
T =1
The localization process aims to solve the optimization prob-

lem in (1), which requires the evaluation of f(y;|6;) for each
i=1,2,....n.

'In the sequel, when there is no ambiguity, we will omit 0;(x)’s explicit
dependence on @ and simply write 6; for notational convenience.
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The conditional distribution f (y;]6;) is unknown in general
and conventional methods use simple models to approximate
the relationship between the measurements and the positional
feature. Usually, such relationship is described by using a SVE
0:(y;) so that f(yil6;) o f(éi(yi)wi) which is modeled by
a simple distribution such a Gaussian with mean 6;. In these
cases, the MLE becomes the least square estimate (LSE) for
cases with same variance or the weighted least square estimate
(WLSE) for cases with different variances. In particular, the
LSE leads to

T = mﬂinz |0:(x) — él(yl)’l (2)
i=1

where 6;(x) is the positional feature value corresponding to x
and [ = 2. It is recommended to use WLSE for heterogeneous
and independent measurements (e.g., range and angle data
from different nodes) to account for different variances and
ensure proper normalization [71]. Minimum norm optimiza-
tion in (2) can be efficiently solved using conventional methods
and readily available solvers. The use of the L1-norm (i.e.,
I = 1) instead of the L2-norm (i.e., [ = 2) can improve the
performance in some scenarios, especially in the presence of
outliers [69], [70].

The framework of SI-based localization has been recently
proposed in [44], [45], and [46] as a learning-based solution
to the limitations of SVE-based localization. SI can incorpo-
rate all the positional information of the target provided by
measurements. Indeed, SI is obtained by learning the joint
distribution of positional features and measurements from off-
line measurements. In particular, the SI of measurement y;
for positional feature 6;, denoted as Ly, (6;), is proportional
to f(y;|0;) in the absence of prior knowledge for the positional
feature 0; (using a constant reference prior [45]). If prior
knowledge or contextual information for the positional feature
0; is available (e.g., digital maps, mobility models), then 8;
is treated as a RV according to a Bayesian approach, and we
have that Ly, (6;) o< f(0;,y:)/f(8;). Using SI, the MLE in (1)
becomes

T = argmax H Ly, (6;). 3)

T 4=

Note that (3) can be used also in case of heterogeneous and
multimodal measurements, such as combining range and angle
data from different nodes [44], [46].

B. Existing Approaches for SI Learning and Processing

As a general approach, SI is obtained in two phases
illustrated in Fig. 1. During the training phase, a dataset
of S training samples is collected as {0k, yx}5_,, where
0, is the ground truth value of the positional feature.
The training samples are used to learn the genera-
tive model for the sensing measurement, i.e., the joint
distribution f(6,y).

Existing approaches for SI learning utilize a Gaussian
mixture model (GMM) to approximate the joint distribu-
tion f(6,y) by leveraging the dataset of training samples
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{6k, yk}le [72], [73]. In particular, a mixture of K Gaussians
is used to approximate the distribution f(6,y) as
K
f0,y) = Z ai0((6,y);m;, 3;) 4
i=1
where o(x; p, X) denotes the PDF of a Gaussian random
vector x with mean p and covariance matrix 3. Such an
approximation f(6,y) can be obtained using the expectation
maximization (EM) algorithm as detailed in [45].

During the online phase, the SI function £, (6) for a new
measurement g’ is obtained by plugging in such measurement
in the learned generative model, ie., Ly (0) < f(6,y').
Likewise, the SI function corresponding to the data fusion of
p measurements y' = [y}, Y5, .. .,y,] can be obtained as

~ ~ ~

as long as y1,¥s, - - -, y,, are conditionally independent given

0 [44].
During  the  localization  phase,  multiple  SIs
Loy (61), Ly, (02),...,Ly,(0,) are collected from n

different sources (e.g., anchors), and the positional state
can be estimated using (3). Existing methods for SI-based
localization address such optimization by evaluating the SIs
functions in a grid of possible values for « and selecting & as
the grid element that maximizes the values of (3) [44], [45].

C. Challenges of Existing Approaches

SI-based localization provides a significant performance
improvement with respect to SVE-based localization, espe-
cially in terms of robustness to wireless propagation conditions
and hardware limitations [44], [45], [46]. In the following,
we describe the main challenges of SI-based localization in
terms of processing and communication efficiency as well as
the generality of the measurements that are considered.

1) Communication and Processing Challenges: In terms
of position estimation, solving the optimization problem (3)
through an exhaustive grid-based search leads to a complexity
that rapidly increases with the grid resolution. Specifically,
in terms of number of grid levels per dimension such complex-
ity is quadratic or cubic for 2D or 3D localization, respectively.
Therefore, grid-based techniques are challenging to implement
in large-scale environments.

In terms of communication costs, the inter-node commu-
nication required to exchange and process SIs can be also
highly inefficient. To implement SI-based localization in a
network of nodes, either the learned model parameters and
measurements can be shared in the network or the SI can
be obtained locally for each measurement and communicated
to other nodes. As an example, when y; is the vector of
received signal samples at the ith receiver in a network, either
the samples y; with the learned model f(0;,y;) or Ly, (6;)
need to be communicated to a central node for fusion. The
former approach can result in unaffordable communication
complexities in cases with high-dimensional measurements or
model parameters. In addition, such approaches may under-
mine the privacy of different agents since the learned model
can contain user-specific information. In the latter approach,
the communication load can be considerably high since the SI
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is a general continuous function of #; determined by a possibly
large number of parameters.

2) Learning Challenges for Generic Sensing Measurements:
The importance of generative model estimation according
to (4) is evident across various scenarios, benefiting from the
adaptability of mixtures of Gaussians in accurately approx-
imating general continuous distributions. However, the use
of mixtures of Gaussians results in challenging learning pro-
cesses [72], [73]. For instance, maximizing the likelihood over
mixtures of Gaussians is a non-convex optimization problem
and existing methods like the EM algorithm only find a local
optimum and rely on the initialization used.

As another limitation of the usage of mixtures of Gaussians,
there are cases where modeling based on Gaussian distribu-
tions is inappropriate, particularly in describing discrete or
categorical values. The use of beam scanning and pairing
for sensing, localization, and communication, often involves
discrete angle measurements [52], [53], [54], [55]. In most
cases, angle estimates are constrained to a very limited set
of values due to hardware limitations, i.e., the number of
antennas, as well as latency constraints on the beam sweeping
operation [72], [73], [74], [75]. To effectively incorporate
these types of measurements for SI-based localization, gener-
ative models capable of handling discrete data are required.
However, Gaussian distributions or mixtures of them are
inappropriate for modeling discrete RVs.

III. SI-BASED LOCALIZATION VIA BELIEF
CONDENSATION

This section describes an approach leveraging BC method
for efficient SI-based localization. The presented approach
is described in Fig. 2; the online phase of the localization
process is developed in two steps: (i) different nodes in the
network process new measurements y’ (e.g., time or angle
measurements) to obtain multiple estimates of the parameter
0, i.e., a finite set Opc; (ii) a centralized processor uses all the
Ogc to obtain the estimated state vector . The BC method is
used to obtain Opc by approximating the SI L,,(6).

A. SI Approximation via Belief Condensation

As illustrated in Fig. 2, the BC step takes as input the
new measurement ¢y’ and the learned generative model f (6, y)
and provides as output a set of MVEs, denoted by ©gc. For
example, if 3’ is a distance measurement and 6 is the true
distance, the output Opc contains feasible values for the true
distance. The main idea is to approximate the SI continuous
function with a finite set of values, namely MVEs, that can be
processed more efficiently. In the following we show how to
obtain such approximation by minimizing the Kolmogorov-
Smirnov (KS) distance. The KS distance is a measure of
the difference between two probability distributions, which
is calculated as the maximum absolute difference between
the cumulative distribution functions (CDFs) [76]. The KS
distance is non-parametric and does not make any assumptions
about the shape or parameters of the underlying distributions
being compared. The SI function £, (#) is then approximated
by a function supported in r values Opc = {él,ég, .. .,ér},
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which correspond to the MVEs. The set Ogc is chosen as
the one that minimizes the KS distance with respect to the
normalized SI. In particular, we define the CDF induced by a
SI as

L Ly (6)ds
T Ly (o

— 00

Fr(0) (6)
The following theorem shows how the KS distance can
be minimized by using a piecewise CDF obtained from the
quantiles of F(6).
Theorem 1: Let F be the CDF induced by a SI £, ().
If 7, is the set of CDFs with r support points in the real line,

and Fr(0) = 137 1{0 < 6;} € F, with F(6;) = 21,
then
F2(0) € arg min (Sup Fr(0) — ﬁ(a)D
FeF, \OeR
and
~ 1
sup |F(0) — Fg(@)’ =50
AR r

The theorem above follows from the results in Proposition
3 and Proposition 4 in [56] for the addressed settin& i.e.,
by substituting F'(x), G¢, and m in [56] with F(6), F.(6),
and r, respectively. The above result shows that the uniform
distribution supported on the 23;1 -quantiles for: =1,2,...,7r
of the normalized £, (6) is the probability distribution, having
smallest KS distance to the normalized £, (6). The resulting
support points 0; are referred to as the MVEs for 6.

Selecting the » MVEs according to Theorem 1 brings

multiple advantages, as described in the following.

o The MVEs {6;}7_, that approximate the SI have a clear
interpretation. Specifically, they correspond to equally
likely values for # when the KS-closest distribution to
the SI is considered.

¢ Storing, communicating, and processing r values is much
more efficient than handling the entire function £, (6).

o Sl-based localization leveraging MVEs can rely on sim-
pler algorithms similar to those used for SVEs.

o The MVEs in Opc can be easily calculated using Theo-
rem 1 through Algorithm 1.

Algorithm 1 shows the pseudocode for approximating the
SI £,(8) in the interval (Omin, Omax). For a discretization of

Ilustration of the main steps for efficient SI-based localization based on BC.

Algorithm 1 ST Approximation Through BC
Input: SI £4(0), Omins Omax, 7 >0, A =7
Output: MVEs él, ég, e ,éT
A — (emax - omin)/h
191 — emin
g0
1+—1
for j =2,...,h do

19]‘ < 19]'_1 + A
¢ Ly(05)
F; — A Zi:l CL
end for
for j =1,2,...,h do
if (¢ — F;/F}) > 0 then
else
ifq > (F] — ijl)/2Fh then
éi — 19]'
end if
if ¢ = r then break
else
t— 1+ 1
qe—q+1/r
end if
end if
end for

(Ormin, Omax) With h levels, such algorithm has a computational
complexity O(h) and can be easily implemented using h eval-
uations of the SI. Note that finding the quantiles corresponding
to the BC support points requires only O(h) operations,
as shown in the second loop in Algorithm 1. Specifically,
the quantiles can be obtained sequentially with a single pass
through the sequence of CDF values, given the inherently
non-decreasing nature of this sequence.

Fig. 3 illustrates an example of BC for soft range informa-
tion, i.e., y is a range measurement for the distance feature
0. In the example, the range measurements are drawn from
a RV that follows a multi-modal distribution. During the
training phase, 100 samples of range measurement and ground
truth values are collected and used to estimate the generative
model through GMM fitting. The BC corresponding to the
SI £,(0) is obtained with » = 10 and h = 1000, following
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Fig. 3. Tllustration of BC of soft range information in an example scenario. The blue solid lines represent the SI (a) and its CDF (b). The red solid lines

represent the discrete set of range values (a) and the piecewise approximated CDF (b) obtained through BC. The gray dotted lines represent the discrete set
of range values (a) and the piecewise approximated CDF (b) obtained with uniform sampling of the SI.

Algorithm 1. In particular, Fig. 3a shows the continuous SI
(blue curve) and compares it to the MVEs in Opc obtained
through BC. A further comparison is made with the case where
uniform sampling is used. It can be noted that the MVEs
obtained with BC are able to capture the multimodality of the
distribution, with more samples around the most likely values.
Differently, the MVEs obtained with the uniform sampling
have many samples in less likely values. Fig. 3b shows the
corresponding CDF and compares it with the empirical CDF
of the MVEs for both the BC and uniform sampling. Such
figure also shows that the proposed approximation achieves the
smallest KS distance, since the maximum difference between
the continuous and discrete CDF is 1/2r. Fig. 4 illustrates the
KS distance between L, () and L, (f) as a function of the
number of MVEs r. The results are compared using the two
methods of uniform sampling and BC. It is evident that the KS
distance is lower for the BC, even with high values of r. This
indicates that BC is more effective to approximate L, (0)

B. SI-Based Localization via MVEs

As illustrated in Fig. 2, the localization step takes as
input the MVEs Opc representing multiple feasible values
for the feature 0 (e.g., true distance), and provides as output
the estimated position &. Let £y, (6;) for ¢ = 1,2,...,n be
the SIs corresponding to measurements {y;}? ; and Opc; =
{0;1,0;2,...,0;,} be the MVEs obtained by Algorithm 1.
We now show how the use of Opc; can significantly improve
the communication and processing efficiency.

1) Norm Minimization: MVE-based localization can be
directly achieved by extending (2) as

@:mﬂ}nZZwi(m) —0: 4. 7)
i=1j=1

This optimization problem can be solved similarly to that
in (2), i.e., the computational complexity is similar to that

0.5
@+ Uniform Sampling
e ——BC

0.4 r° ,
803
§ .
2}
;_5 Q
2]
Mo0.2 ¢ 8

0.,

Fig. 4. KS distance between Ey () and Ly () as a function of the number
of MVEs r using uniform sampling and belief condensation.

of SVE-based techniques. Specifically, the optimization prob-
lem (7) is as tractable as that for LS in (2) and their main
difference is that the objective function (7) has nr terms
instead of n.

2) Statistical Interpolation of MVEs: An alternative
approach is proposed here for scenarios where it is necessary
to reduce the inter-node communication load, yet there are less
stringent requirements in terms of processing. In this case, the
MVEs obtained through BC can be statistically interpolated
to reconstruct the SI in a continuous form. In particular,
the approximate SI L, (0) can be obtained by statistically
interpolating the MVEs Opc using histogram-based density
estimation as

~ 1 < 6—0
&0 - 5> K(5") ®)
q=1

where K(x) = 1y 1)}(z) and h defines the width of each
histogram interval.
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Fig. 5. Illustration of SI with BC and statistical interpolation in the example

scenario. The blue solid line represents the continuous SI function £, (). The
gray dotted line represents an approximate SI with uniform sampling. The red
solid line represents the approximate SI with BC and statistical interpolation,
ie. Ly(6).

Fig. 5 shows the effect of statistical interpolation and
compares the original SI and the approximate SI with BC and
statistical interpolation in the same setting of Fig. 3. It can be
seen that BC together with statistical interpolation enables the
reconstruction of the main modes of the original distribution.
The figure also compares two SI approximations obtained via
BC and uniform sampling. It can be seen that the approximate
SI obtained via uniform sampling is poorer than that obtained
via BC, especially for the most likely values of 6.

C. Discussion

The methods presented above can enable to reduce the
communication overhead in SI-based localization while main-
taining the benefits of using continuous functions representing
the SIs. For example, different nodes in a heterogeneous
network might have varying requirements in terms computa-
tional capabilities and resources, so that some of them can
communicate using SI functions while others use MVEs.
By statistically interpolating MVEs to obtain the approximate
SI, we can exploit all available information and apply SI-based
localization algorithms, thereby accommodating the diverse
capabilities of the nodes and enhancing the overall accuracy
and efficiency of the network.

The proposed BC method reduces the communication
requirements and minimizes the KS distance to the original
distribution. For SI-based techniques based on mixtures of
Gaussians, other methods can also be used to approximate
SI, such as those that involve pruning and merging com-
ponents [77], [78], [79], [80]. However, these methods are
designed to simplify mixtures of Gaussians by approximating
various distance metrics with unknown errors and require
complex procedures. On the other hand, the approximation
based on BC method finds the closest distribution with high
efficiency and can utilize a straightforward least squares
algorithm for the efficient processing of MVEs, making it more
advantageous overall.
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The presented methodology for SI-based localization based
on BC can result in efficient localization systems that can
make use of common algorithms for SVE-based localization.
The main benefits of the methods proposed in terms of
communication and processing complexity are as follows.

o General SI functions can be accurately represented using
a reduced number r of support points. As described
above, the probabilistic error due to such approximation
decreases at a rate O(1/r) for general SI functions.
The experimental results in Section V show that even
r = 10 support points can be enough to attain the benefits
of SI. On the other hand, parametric SI-based techniques
based on mixtures of Gaussians may require to use a
large number of parameters to represent SI functions.
For instance, if an agent combines P measurements with
individual SIs given by mixtures of K components, the
resulting SI would be given by a mixture with K%
components resulting from the multiplication of the P
mixtures.

o Conventional localization algorithms can be used for SI-
based localization. The » MVEs can be treated as multiple
SVEs. This enables to reap the benefits of SI using
conventional algorithms for SVE-based localization such
as LS.

IV. SI viA MAXIMUM ENTROPY

This section presents how the maximum entropy method
can be applied to SI-based localization. In particular, MEMs
are used to learn the generative model f(6,y) and can be
applied to handle sensing measurements of generic types,
including those that are discrete or categorical. Examples of
discrete variables are angles and range values with a finite
resolution due to hardware limitations. Example of categorical
measurements include target classification or antenna type, and
any variable that falls in an unsorted category.

A. Maximum Entropy Method for SI Learning

The maximum entropy method advocates employing a
distribution that maximizes entropy among those adhering
to specific expectations’ constraints [59], [60], [61]. In the
following derivations, we apply this method to learn the joint
distribution, denoted as f(f,y), which maximizes Shannon
entropy within the set of distributions satisfying a predefined
set of expectations’ constraints derived from training samples.
This approach does not rely on the adequacy of modeling
assumptions, such as Gaussian distributions, and only requires
to estimate expectations using training data.

Let the random vector z = (0,y) be formed by pairs
of positional features and their corresponding observations.
We use the training samples {z;}7_; = {6;,y;}{_; to calcu-
late constraints for the expectation of a function ®(z) € R™
defined on the support Z of the random vector z, ie., ¢ :
Z — R™. Such functions & are usually known as feature
mappings in the field of ML and are commonly formed by
polynomials and threshold functions [62], [63], [64], [65].
In the beamsweeping example, z = (6,y) can be formed by
pairs of angles and their corresponding observations. Training
samples {z;}7_, = {0;,y;};_, are composed by multiple
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Fig. 6. Tllustration of the main steps for MEM-based learning phase.
angle measurement obtained with respect to different angles
during the training phase.

Consider an interval estimate for the expectation of the
feature mapping ® in the form [ — X, 7 + A]. The most
common way to get such an estimate is using sample means
and standard deviations as

%Zcbj(zi)
i=1

> (®4(zi) — )

i=1

7j

1

S

Aj )
where 7; and \; are the jth elements of 7 and A, respectively,
with 7 = 1,2,...,m. Then, we choose the distribution f(z)
that maximizes the entropy among those that have expecta-
tions aligning with the data-based estimates. Specifically, the
generative model determined by MEM is the solution to the
optimization problem

maxifmize —E¢{log f(z)}

T - ASEH{2(2)}

that is a convex optimization problem since Shannon entropy
is concave and the constraints above are linear on f(z). Using
convex duality, it can be shown (see, e.g., [81], [82], [83], [84])
that the solution of such optimization problem is

fMEM(z) = exp {q)(z)Tu* + v} (11)

where p* € R™ is the vector of parameters solving the convex
optimization problem

subject to <XT+A (10)

minimize —7 p + lo
7

g/exp{é( ) p}dn(z +Zklm
Z
(12)

and

= —log [ exp{@(=)"u"Yan(z)

where 7(z) is the base measure in Z. As v* results in a
proportionality constant for fugm(2), its calculation can be
avoided.

Highly efficient methods have been developed to solve the
convex optimization problem in (12) [63]. The integral in the
log-partition function in (12) must be approximated in practice.
Various approaches for such approximations exist, including

uniform grids, Monte Carlo methods [82], and Gaussian
quadrature [83]. For instance, using a Monte Carlo approach,
the log-partition function in (12) can be approximated as

log /Z exp{®(2)"u}dn(2) Z exp{®(=

ZGZ

log

Tu}

(13)

where the sample space Z is given by a sufficiently large
number of samples.

Fig. 6 illustrates the main steps for SI learning through
MEMs. The constraint calculation block defines the expecta-
tion constraints obtained from the training samples and (10).
Then, the maximum entropy optimization problem is solved
according to (12), thus obtaining the parameters p* and
v*. Finally, the generative model is determined as fyem(2)
in (11). The online phase and the determination of MVEs
shown above can be carried out as described in Sec. III since
those steps are independent of the method used to learn the
Sls.

Note that the generative model derived in (11) via the max-
imum entropy method does not depend on any assumptions
about the underlying data or its distribution, as it only requires
generic training data. Consequently, the MEM is particularly
well-suited for managing discrete and categorical data, which
are often inadequately handled by existing SI learning methods
that rely on Gaussian distributions or their mixtures. The
numerical results in Sec. V showcase that the maximum
entropy method empowers the utilization of the SI framework
with discrete measurements, further enhancing localization
performance in comparison to SVE-based techniques.

In the following subsections, we explore various feature
mapping choices commonly used in other maximum entropy
methods and introduce a novel approach tailored for mea-
surements acquired in scenarios influenced by multimodal
propagation conditions of wireless signals.

B. Feature Mappings for MEMs

Here we briefly introduce low-complexity feature mappings
® that are used in existing applications of MEMs for gener-
ative model estimation [59], [60], [61], [62], [63], [64], [65].
These mappings are not developed for localization purposes
but are commonly used in other types of systems, such as
language modeling, among others. Starting from these basic
features, we will then provide clustering-based features for
SI-based localization.
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1) Extraction of Elementary Features: in a first step, the
original values in Z, z = (0,y) of dimension F are trans-
formed to elementary features z(*) with dimensionality L.
For example, the I-th component of the feature mapping
can be given by the j-th component of z as z; ' = z; or

can be a boolean value depending on the value of z; as

1
Zl( ) = ]]'{ZjERL}'

2) Products of Elementary Features: in a second step,
elementary features z(1) are transformed to product features
2(?) with dimensionality Ly. Specifically, let j1, j2, ..., jr €
{1,2,..., L1}, the corresponding product feature of order k
is given by zl@) = z](-i) . z](l) Ce z(i). This process can
be repeated to obtain multiple polynomials of elementary
features. The feature mapping is then given by ®(z) = ®4(z2),
Dy(z)y..., P (z) where for | = 1,2,...,m, ®i(z) = z
corresponds to one of the features described above.

3) Dimensionality Reduction: in this initalization step, the
original values in Z, z = (,y) with dimensionality F' are
transformed to ®(©(z) = 2(9 with dimensionality Ly < F.
Specifically, given a function +(-) that reduces dimensionality
of measurements y, the original values z are transformed as
30)(z) = 20 = (6,4 (y)).

In common applications of maximum entropy, the two steps
for the extraction of elementary features and their product are
often applied to the vector 2(®) = ®(°)(2) rather than directly
to z.

C. Clustering-Based Features for SI-Based Localization

We introduce a type of feature based on clustering. Such
an approach is used to design MEM features that can model
the prevalent multimodality of wireless signals in challenging
environments characterized by multipath and non-line-of-
sight (NLOS) conditions. By leveraging clustering techniques,
we can effectively model this multimodality, thus distin-
guishing and grouping measurements (e.g., range, angle or
power measurement) based on the propagation conditions that
correspond to line-of-sight (LOS) and NLOS or are affected
by multipath fading. The proposed clustering approach can
help to define a feature mapping that is suitable for modeling
measurements in wireless sensing and localization scenarios.

We leverage training data to identify m clusters corre-
sponding to the values of z or any pre-extracted feature.
Efficient acquisition of these clusters can be achieved
using algorithms such as K-means [85]. For each cluster
j =12,...,m, let ¢; be its centroid (e.g., the average of
samples in the jth cluster). For any 2z € Z, let {; be the
squared distance to the jth centroid, that is

§=(z—¢)'(z—¢))

for j =1,2,...,m and j(z) be the closest centroid to z, that
is

argmin §;
§=1.2,c.om

i(z) =

then the feature mapping at z is ®(z) € R™, with gth
component

bq(z) = 11 (§(2)) &g for g€ {1,2,...m}. (14)
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The selection of the feature mapping plays a pivotal role in
determining the MEM since it encapsulates the attributes of
positional features and sensing measurements estimated from
training data. The performance of the BC and MEM proposed
in Sec. III and IV will be evaluated in the following section
both in terms of complexity as well as localization accuracy.

V. CASE STUDIES

This section presents results in two case studies:
(i) TDOA-based localization and (ii) DOA-based localization
via beam scanning. The first case study shows the efficiency
provided by the usage of SI-based MVEs obtained through
BC. The second case study shows how MEM-based SI can
be used to handle discrete measurements. In particular, each
measurement is the angle estimated through beam sweeping
with low angular resolution. In both case studies, results
obtained with BC and maximum entropy methods will be
compared to the results obtained using classical SVE-based
localization and using existing methods for SI.

A. Case Study 1: TDOA-Based Localization

The first case study takes as example application
TDOA-based cellular localization, which is a method used
to determine the location of a user equipment (UE) in a
cellular network. It relies on measuring the reference signal
time difference (RSTD) between neighboring gNodeB (gNB)
and a reference gNB, where gNBs are the 5G New Radio (NR)
base stations.

1) Simulation Settings: We consider a squared scenario with
500 m edge length, with four gNBs deployed at the corners.
The reference gNB is the one at the bottom left corner. For
each random instantiation, the UE is in a random position
x, uniformly distributed within the square, and collects the
measurement y; which is the ith RSTD measurement, with
i = 1,2, 3. The positional feature is 6;(x), i.e., the true RSTD
value for a UE being at . We distinguish between LOS and
NLOS conditions. In the LOS conditions, all the links are
considered in LOS. In the NLOS conditions, the probability
for each link of being in NLOS is 0.3. We simulate a 5G
NR downlink signalling for DL-TDOA. All gNBs are syn-
chronized to transmit the positioning reference signal (PRS)
at the same time. The UE estimates the time-of-arrival (TOA)
of the PRS signals from different gNBs, and RSTD values are
computed for all the pairs of neighboring gNB and reference
gNB. We consider PRS signals with sub-carrier spacing of
30KHz at 3 GHz. The transmit power is 44 dBm, the trans-
mitting and receiving antenna gains are set to 5dB and 3 dB,
respectively. The noise figure is set to 6 dB. For each gNB-
UE link, the link-level fading channel is modelled according
to the standard NR tapped delay line (TDL) as defined in [66],
with path loss calculated according to the urban macro (UMA)
scenario. Specifically, LOS channels are modelled through the
TDL-D and TDL-E, while the NLOS channels are modelled
through the TDL-A, TDL-B, and TDL-C.

2) Processing: The TOA estimation is obtained through a
peak search after cross-correlation between the transmitted and
received waveforms [66]. Then, the RSTD is obtained with
respect to the reference gNB. MVEs are obtained from SIs
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Graphical representation of SI (a) and MVEs (b) for a single receiver position (blue dot). SI is obtained using GMM, whereas MVEs are obtained

using GMM and BC. The gNBs are indicated with red circles and the estimated position is indicated by a green dot.
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Fig. 8. Empirical CDF of the localization error varying the local-
ization algorithm (SVE, grid-based SI, and SI with BC and statistical
interpolation).

as described in Sec. III and then used to estimated positions
solving (7) with [ = 2, with Opc; = {ém};:l being the
MVEs for each pair ¢ of gNBs, varying r. The statistical
interpolation is evaluated by reconstructing the SI starting from
the MVEs Ogpc,; as described in Sec. IlII-B.2 using h = 2r
in (8). Specifically, in this case study, SI is learned by using
a GMM model. The SI model is trained with 200 values of
z; = {y;, 0;} for the three gNB with 6; being the ground truth
RSTD value. The training set is updated at each iteration for
each position estimate. However, simulations using a single
training set for all iterations did not show significant deviations
in performance results. The SVE-based estimation is obtained
by solving (2) with [ = 2 and 0; = y; with ¢ = 1,2, 3 being the
RSTD measurements. Note that the SVE-based localization
is equivalent to the TDOA-based localization as each pair
of gNBs yields a single-valued RSTD estimate. Using norm
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Fig. 9. Empirical CDF of the localization error varying the localization
algorithm (SVE, grid-based SI, SI with BC and statistical interpolation, and
SI with BC used as MVEs).

minimization in (7) with [ = 2 corresponds to a TDOA-based
least squares approach. The grid-based SI is obtained using
a number of uniformly equidistant grid points equal to G =
1002 unless specified otherwise.

Figs. 7a and 7b show graphical representations of the SI and
the MVEs, respectively, for a given UE position. The green
contour in Figure 7a and the green lines in Figure 7b corre-
spond to the top left gNB. It can be seen that the SI captures
the multimodality inherent in the TDOA measurements due to
the NLOS conditions. Notably, the proposed MVEs are also
capable of capturing this multimodality.

Fig. 8 and Fig. 9 show the performance in terms of local-
ization accuracy through the empirical CDF of the localization
error, which is given by the Euclidean distance between the
true and estimated position. In these figures, we set norm
minimization with [ = 1 for both SVE-based localization
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and SI-based localization with MVEs. This choice was made
because [ = 1 and [ = 2 provide similar performance for SVE-
based localization, while | = 1 provides better performance for
SI-based localization with MVEs. Fig. 8 shows the empirical
CDF of the localization error by comparing the SVE, SI and SI
with BC and statistical interpolation, the latter with » = 10 and
r = 100. Dashed lines refer to the case with only LOS
conditions. The results show that in the LOS conditions, the
performance are very similar with SVE, grid-based SI, as well
as SI with BC and statistical interpolation. For instance, all
the algorithms achieve a 90th percentile localization error of
5.5 m. Differently, in the presence of NLOS conditions with
probability 0.3, the performance of SVE-based localization
greatly degrades, achieving a 90th percentile localization error
of 35m. In such a case, the usage of SI can mitigate the
effect of NLOS conditions and all the SI algorithms achieve a
90th percentile localization error below 14 m. In particular, the
grid-based SI and the use of BC with statistical interpolation
reach very similar performance. This demonstrates that the
information about the measurement distribution can be con-
densed in a few samples of SI, i.e., r = 10.

Fig. 9 compares the two BC methods, i.e., BC and statistical
interpolation, and BC used as MVEs (without statistical inter-
polation). We here recall that the latter enables the use of more
efficient localization algorithms, such as norm minimization.
The results indicate that utilizing » = 10 MVEs yields a
90th percentile localization error of 22m, with a significant
improvement with respect to the SVE method.

Fig. 10 illustrates the probability for the localization error
to be lower than 10m, i.e., the percentage of simulations
where the localization error is below this threshold. The figure
also presents the computational time for various localization
algorithms in both LOS and NLOS conditions. For SI-based
localization, a grid-based algorithm is employed with the num-
ber of grid points G determining the spatial resolution (higher
G values correspond to higher spatial resolution). The results
indicate that SVE-based localization and SI-based localization
using BC have similar computational times, but SI-based
localization with BC can have superior performance in NLOS
conditions. The performance of the grid-based SI localization
is contingent on the spatial resolution. Increasing the spatial
resolution enhances performance but also raises computational
costs. In the NLOS conditions, achieving performance compa-
rable to SI with BC (with a 77% probability of the error being
below 10 meters) requires 4.3 times larger computational time.
If a higher computational time is acceptable (15 times larger
with respect to the SVE-based localization), the grid-based SI
can even outperform SI-based localization with BC, achieving
an 84% probability of maintaining localization error below
10m.

B. Case Study 2: DOA-Based Localization With Beam
Sweeping

The second case study focuses on localization using beam
sweeping. This technology can be used for both active and
passive users in various applications, such as wireless com-
munications, radar systems, and optical sensing. By sweeping
the beam over a specific area, it is possible to detect and locate
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localization. The grid-based SI localization is shown for different values of
grid points G.

objects or signals within that region. In wireless communica-
tions, beam sweeping can be used to improve signal strength
and coverage by directing the beam towards a specific location
or receiver [48], [49], [50], [51]. The beamscan algorithm
estimates the DOA by scanning the array beam over a region
of interest. The algorithm computes the output power for each
beamscan angle over a finite number of possible angles and
identifies the maxima as the DOA estimate.

1) Simulation Settings: We consider a square scenario with
a side length of 40m, with four receivers positioned at the
corners. The transmitter is located at a random and unknown
position, denoted as x, uniformly distributed within the square.
The receivers utilize a Uniform Linear Array (ULA) com-
prising ten isotropic antenna elements, operating at a carrier
frequency of 1GHz and with ideal non-overlapping beams.
The transmitter is a narrowband source producing linear
Frequency Modulated (FM) pulses with 100 KHz bandwidth.
The transmit power is 30 dBm and an additive white Gaussian
noise channel with noise power of 10dBm is considered.
To simulate NLOS conditions, the incident angle is deviated
of a bias uniformly distributed between 10 and 20 degrees
with probability 0.5. Each measurement y; represents the angle
estimate for the ¢th receiver, a discrete variable with a varying
number of possible values determined by the size of the
antenna array and beam width. In this simulation, we adopt an
angular resolution of 12 degrees, resulting in 8 possible values
for each angle estimate.

2) Processing: Sl-based estimation of the transmitter posi-
tion is obtained through the proposed maximum entropy
method and with a training dataset of 200 positions. In this
case study, y; with ¢ = 1,2,3,4 are the discrete angle mea-
surements from the four receivers. Then, GMM is not directly
applicable since a Gaussian modelling cannot represent the
variable y; that takes only 8 different values. For each receiver,
ST training relies on 200 realizations of z; = {y;, 6;}, with 6;
being the ground truth angle values. The sample space for the
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(b) MVEs for DOA, with r = 8

Graphical representation of SI (a) and MVEs (b) for a single transmitter position (blue dot). SI is obtained using MEM, MVEs are obtained using

MEM and BC. The receivers are indicated with red circles and the transmitter estimated position is indicated by a green dot.

09F
0.8F
0.7
E
o 0.6 - B
Sosr 1
=
[="
£04r B
m SVE
03F —&— Grid-based SI g
——SI1w/ BC, interp., r=10
0.2 —&— ST w/ BC, interp., r=100 -
—+—SIw/BC, MVEs, r=1
0.1 SIw/BC, MVEs, r=10 -
—#—SIw/ BC, MVEs, r=100

0 5 10 15 20 25 30
Positioning Error [m]

Fig. 12. Empirical CDF of the localization error varying the localization
algorithm. The SVE-based localization uses norm minimization with [ = 2,
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numerical integral in (13) is a uniform grid of 100 angle values
between —180 and 180 degrees. The SI-based localization with
MVEs is accomplished by solving (7) with [ = 1, where
Opc = {éi,j}gzl are the output values of BC. Then, the
statistical interpolation is evaluated by reconstructing the SI
starting from the same values ©gc. SVE-based localization is
accomplished by solving (2) with [ = 2. This choice was made
to ensure a fair comparison. As demonstrated later in Fig. 13,
comparing the results for [ = 1 and [ = 2, we observe that
l = 1 performs better for SI-based localization with MVEs
due to its robustness against outliers, whereas the SVE-based
localization yields better results with [ = 2.

Figs. 11a and 11b show graphical representations of the SI
and the MVEs, respectively, for a given transmitter position.
The red contour in Figure 11a and the red lines in Figure 11b
correspond to top left receiver. It can be seen that the SI
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Fig. 13.  Empirical CDF of the localization error varying the localization

algorithm. The SVE-based localization and MVE-based localization both use
norm minimization with [ = 1 (solid lines) and [ = 2 (dashed lines).

captures the uncertainty of the DOA measurements due to
the beamwidth and the power distribution among the differ-
ent beamscan angles. Notably, the proposed MVEs are also
capable of capturing this uncertainty.

Figs. 12 and 13 show the localization performance in terms
of empirical CDF of the localization error, i.e., the Euclidean
distance between the true and estimated UE position.
Fig. 12 shows the empirical CDF of the localization error for
different implementations of SI-based localization. The classi-
cal SVE-based localization is used as benchmark. The figure
shows that the grid-based SI provides the best performance.
In addition, SI-based localization with BC and statistical
interpolation provides similar performance, especially for high
values of r. For instance, both grid-based SI and SI with BC
and statistical interpolation (r = 100) achieve a 90th percentile
localization error of 13m. The percentile increases to 15m
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when r = 10 with statistical interpolation and to 16 m without
interpolation (either » = 10 or » = 100). Yet, the 90-percentile
for classical SVE-based localization is 26 m. In addition,
SI-based localization with MVEs results in a significantly
improved performance compared to SVE-based localization.
The figure also shows that such performance improvement
can be further increased by using interpolation methods, at the
expenses of a higher computational complexity.

Fig. 13 compares the SVE-based localization using (2) and
the SI-based localization with MVEs using (7) both with | =
1 and [ = 2. The results show that the norm minimization with
l = 1 outperforms the | = 2 case. Furthermore, the impact
of [ is much larger for MVE-based localization. The use of
norm minimization with [ = 1 is especially suitable for SI-
based localization with MVEs as such optimization is robust to
the presence of outliers that are more frequent using multiple
values. For example, the 90-percentile of the localization error
is 16 m for SI-based localization with MVEs with [ = 1 and
increases to 19 m for [ = 2. For SVE-based localization, there
is a crossing between the two curves, the 90-percentile of the
localization error is 25 m for SVE-based localization with | =
2 and increases to 36 m for [ = 1.

VI. FINAL REMARK

The paper presented a framework to enhance both efficiency
and accuracy of the localization process by leveraging soft-
information (SI). Through the incorporation of alternative
machine learning techniques and belief condensation, the
presented methods offer two key benefits: (i) the reduc-
tion of communication and computing loads through belief
condensation, and (ii) the facilitation of handling discrete
or categorical measurements through the maximum entropy
method. Results from two case studies, which compared
algorithms of varying complexity, demonstrated that SI-based
localization can achieve significant improvements in localiza-
tion accuracy with reduced computational and communication
demands. By integrating belief condensation and maximum
entropy methods, the presented techniques enhance the versa-
tility of SI-based localization, providing a promising solution
for applications that require a reduced computational overhead
together with an increased adaptability to diverse sensing
measurements.
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