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Abstract—Recently, wideband beamforming using extremely
large-scale antenna array (ELAA) systems have gained much
interest as a means to boost throughput in next generation
(xG) networks. However, conventional phase shifter (PS)-based
beamforming methods face challenges in wideband ELAA sys-
tems due to the beam squint effect, where beams at different
frequencies become misaligned. Although the use of true time
delay (TTD) can address this by creating frequency-dependent
beamforming vectors, traditional TTD-based methods still expe-
rience considerable sidelobe leakage due to the mismatch between
intended and generated beams. In this paper, we introduce
a novel wideband beamforming architecture that dynamically
configures connections between TTDs and PS subarrays using a
switching network. By jointly optimizing subarray connections,
TTD time delays, and PS phase shifts, wideband dynamic array-
of-subarrays (WDAoSA) minimizes sidelobe gain and maximizes
array gain in wideband ELAA systems. Numerical results show
significant improvements in both array gain and data rate
compared to conventional TTD-based methods.

Index Terms—Wideband communications, beamforming,
ELAA, near-field, array-of-subarrays (AoSA).

I. INTRODUCTION

W IDEBAND communications exploiting millimeter-
wave (mmWave) and terahertz (THz) band are key

technologies of next generation (xG) networks to support data-
intensive applications [1]. Despite their benefit, the major bot-
tleneck of wideband communications is the significant signal
attenuation due to path loss and molecular absorption. To com-
pensate for the path loss, a beamforming operation realized by
multi-antenna systems is essential [2]–[5]. Traditionally, phase
shifters (PSs) that apply phase shifts independent of subcarrier
frequency have been widely used for the beam generation.
While these frequency-invariant beamforming techniques have
been effective to some extent, they might not perform well in
wideband systems due to the beam squint effect. The beam
squint effect refers to a phenomenon where the array steering
vectors vary across subcarriers, caused by the difference
between the carrier and subcarrier frequencies [6]. Since the
optimal beams aligned with the array steering vectors vary
for each subcarrier, the frequency-invariant beamforming tech-
niques suffer from severe data rate degradation in wideband
systems.
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To address this issue, approaches that generate separate
beams for each subcarrier using true time delays (TTDs), a
unit comprising multiple switched delay lines, have gained
much attention recently [7]–[12]. By selecting a delay line
for radio-frequency (RF) signal propagation, TTD generates
a phase shift proportional to the signal frequency. In [7], [8],
partially-connected hybrid networks with one TTD connected
to multiple PSs have been proposed. In [9], TTD-based hybrid
precoding techniques have been proposed. In [10], [11], wide-
band beamforming techniques for near-field systems have been
proposed. Also, in [12], a dynamic subarray architecture with
fixed time delays has been proposed. A key challenge with
conventional TTD-based beamforming techniques is that the
partially-connected structure between TTDs and PSs results
in an inevitable mismatch between the desired ultra-sharp
pencil beams and the generated beams. This, together with
the fixed connections betweenTTDs and PS subarrays, leads
a significant degradation in array gain. One exception is
the dynamic subarray structure proposed in [12], but in that
approach, the time delays of the TTDs remain fixed and are not
adequately adjusted to match varying wireless environments.

An aim of this paper is to propose a novel TTD-based
beamforming architecture maximizing the array gain of wide-
band extremely large-scale antenna array (ELAA) systems.
The key idea of the proposed scheme, referred to as wideband
dynamic array-of-subarrays (WDAoSA), is to dynamically
adjust the connections between TTDs and PS subarrays via
a switch network, while jointly optimizing the TTD time
delay and the PS phase shifts. By carefully selecting the
TTDs connected to each PS subarray based on the wireless
propagation environment, the proposed scheme can reduce
the gap between the desired ultra-sharp pencil beamforming
vectors and the generated frequency-dependent beamforming
vectors. From the extensive simulations, we demonstrate that
WDAoSA significantly improves the array gain over the
conventional TTD-based beamforming schemes.

Notation: Random variables are displayed in sans serif,
upright fonts; their realizations in serif, italic fonts. Vectors and
matrices are denoted by bold lowercase and uppercase letters,
respectively. For example, a random variable and its realization
are denoted by x and x for scalars, x and x for vectors, and
X and X for matrices. Sets and random sets are denoted
by upright sans serif and calligraphic font, respectively. For
example, a random set and its realization are denoted by X
and X , respectively. The m-by-n matrix of zeros is denoted



by 0m×n; when n = 1, the m-dimensional vector of zeros is
simply denoted by 0m. The m-by-m identity matrix is denoted
by Im. The operator ∥x∥2 denotes the Euclidean norm. The
operations ⊗ and ⊙ denote the Kronecker product and the
element-wise product, respectively. The transpose, conjugate,
and conjugate transpose of X are denoted by (·)T, (·)∗, and
(·)H, respectively. The notations diag(x) and x(p) represent
a diagonal matrix with the arguments being its diagonal
elements and a vector with the pth power of arguments being
its elements, respectively.

II. WIDEBAND ELAA SYSTEMS

A. Downlink Wideband ELAA System Model
We consider a downlink wideband ELAA system where a

base station (BS) equipped with N uniform linear array (ULA)
antennas serves a single-antenna user equipment (UE). We
also consider an orthogonal frequency-division multiplexing
(OFDM) system with the carrier frequency fc, number of
subcarriers S, and system bandwidth B. The BS is equipped
with the analog beamforming architecture consisting of a
single RF chain, T TTDs, and N PSs. The received signal
ys∈C of UE at the sth subcarrier is given by

ys =
√
Ptxh

H
s wsss + ns (1)

where Ptx is the BS transmission power, hs ∈ CN is the
downlink channel vector, ws ∈ CN is the beamforming vector,
ss is the data symbol, and ns ∼ CN (0, σ2) is the Gaussian
noise at the sth subcarrier. Then the data rate R of UE is

R =
1

S

S∑
s=1

log2

(
1 +

Ptx

σ2

∣∣hHs ws

∣∣2) . (2)

We use the frequency-selective near-field channel model where
the sth subcarrier channel vector hs ∈ CN is expressed as

hs =
√

βsaN (pue, fs) +
√
βs

Np−1∑
i=1

αs,iaN (pi, fs) (3)

where Np is the number of propagation paths, fs = fc− B
2 +

B(s−1)
S−1 is the sth subcarrier frequency, and pue is the position

vector of UE. Also, βs = ( c
4πfsr

)2e−k(fs)r is the path loss
accounting for the free space path loss and the molecular ab-
sorption with k(fs) being the absorption coefficient and αs,i∼
CN (0,Γi(fs)) is the path gain with Γk,i(fs) being the reflec-
tion coefficient [11], [13]. In addition, pi is the position vector
of the ith scatterer and aN (p, fs) is the N×1 near-field array
steering vector at the sth subcarrier defined as aN (p, fs) =[
e−j2πfs

∥p−q1∥2
c e−j2πfs

∥p−q2∥2
c · · · e−j2πfs

∥p−qN∥2
c

]T
where

qn ∈ R2 is the position vector of the nth BS antenna and
c is the speed of light. Then the array gain G(ws,p) of the
sth subcarrier beamforming vector ws at direction p is

G(ws,p) ≜
1

N
aH
N (p, fs)ws . (4)

Note that aN (p, fs) depends on fs. However, in the PS-
based beamforming techniques, the beamforming vectors gen-
erated by PSs remain the same across all subcarriers. Due to
this beam squint effect, the conventional PS-base approaches
suffer from severe array gain degradation in wideband systems.

B. Conventional TTD-Based Beamforming

To mitigate the beam squint effect, beamforming approaches
exploiting a combination of TTDs and PSs have been proposed
[7]–[12]. Specifically, when using T (< N) TTDs and N
PSs, the TTD beamforming vector wttd

s (τ ) ∈ CT at the sth
subcarrier and the PS beamforming vector wps(θ) ∈ CN

for given time delays τ = [ τ1 τ2 · · · τT ]T and phase shifts
θ = [ θ1 θ2 · · · θN ]T are defined as

wttd
s (τ ) ≜

[
e−j2πfsτ1 e−j2πfsτ2 · · · e−j2πfsτT

]T
. (5)

wps(θ) ≜
[
e−jθ1 e−jθ2 · · · e−jθN

]T
. (6)

In the conventional TTD-based beamforming schemes, the
time delays of T TTDs and the phase shifts of N PSs are
configured as τ pc ≜

[ ∥p−qP ∥2

c
∥p−q2P ∥2

c · · · ∥p−qTP ∥2

c

]
and

θpc ≜ 2πfc
[ ∥p−q1∥2

c
∥p−q2∥2

c · · · ∥p−qN∥2

c

]
−

(
2πfcτ

pc
)
⊗

1P so that the corresponding beamforming vector wpc
s ∈ CN

at the sth subcarrier resembles an array steering vector:

wpc
s ≜ wps(θpc)⊙

(
wttd

s (τ pc)⊗ 1P

)
= aN (p, fc)⊙([

[aN (p, fs)]tP
[aN (p, fc)]tP

| t = 1, 2, . . . , T

]T
⊗ 1P

)
. (7)

One can observe that when fs = fc, the relationship wpc
s =

wfc
s holds; however, this equality breaks down when fs ̸= fc.

This discrepancy results in reduced array gain G(ws,p) and
lower data rate R. In fact, the mismatch between wspc and
wfc

s becomes more significant as |fs − fc| increases, causing
substantial sidelobe leakage in the subcarrier beams.

III. WIDEBAND DYNAMIC ARRAY-OF-SUBARRAY
ARCHITECTURE

Recall that conventional partially-connected structure suf-
fers from significant array gain degradation due to the fixed
connections between TTDs and PS subarrays. To handle this
issue, WDAoSA exploits a switch network between the TTD
subarray and the PS subarrays. Using the switch network,
WDAoSA dynamically configures the subarray connection as
well as the TTD time delays and PS phase shifts to maximize
the array gain. Furthermore, to reduce the computational
complexity caused by the large number of antennas, we
develop a distributed beamforming optimization framework
that optimizes the subarray connection and the TTD time
delays in a centralized manner while the PS phase shifts are
optimized in a distributed manner at the subarray level.

A. WDAoSA Network Architecture

The proposed WDAoSA consists of three major compo-
nents: 1) a TTD network with T TTDs; 2) a switch network;
and 3) a PS network with N PSs (see Fig. 1). The N PSs are
divided into L subarrays, each consisting of N

L = K PSs and
a single-pole multiple-throw (SPMT) switch that can be con-
nected to one of TTDs. The subarray connection is expressed
by the subarray connection matrix Eπ ≜ [ eπ1

eπ2
· · · eπL

].
Let π = [π1 π2 · · · πL ]T be the subarray connection vector



where πl ∈ T is the index of TTD connected to the lth PS sub-
array. Also, let τ = [ τ1 τ2 · · · τT ]T and θ =

[
θ1 θ2 · · · θN

]T
be the time delay and phase shift vectors where τt and θn are
the time delay and the phase shift of the tth TTD and the
nth PS, respectively. Then the WDAoSA beamforming vector
ws ∈ CN at the sth subcarrier is

ws ≜ wps(θ)⊙
((

ET
πw

ttd
s (τ )

)
⊗ 1K

)
. (8)

We now explain the decomposition of array gain, which
is crucial for the distributed beamforming optimization frame-
work. Let Nt ≜ {(l−1)K+k ∈ N | πl = t, k = 1, 2, . . . ,K}
be the set of antenna element indices connected to the tth
TTD. Also, let aN,t(p, fs) ∈ C|Nt| and ws,t ∈ C|Nt| be the
corresponding subvectors of aN (p, fs) and ws, respectively:

aN,t(p, fs) ≜
[
[aN (p, fs)]n

∣∣n ∈ Nt

]T
(9)

ws,t ≜
[
[ws]n

∣∣n ∈ Nt

]T
= e−j2πfsτtwps(θNt) (10)

where θNt ≜ [θn | n ∈ Nt]
T is the corresponding subvector

of θ. Then the tth subarray gain Gt(ws,t,p) of ws,t at the
target direction p is defined as

Gt(ws,t,p) ≜ aH
N,t(p, fs)ws,t

= e−j2πfsτtaH
N,t(p, fs)w

ps(θNt
) . (11)

Then G(ws,p) is expressed as a sum of {Gt(ws,t,p)}Tt=1 as
G(ws,p) =

∑T
t=1 a

H
N,t(p, fs)ws,t =

∑T
t=1 Gt(ws,t,p).

Remark 1. Let ms,t and vs,t be the magnitude and argument
of the tth subarray gain Gt(ws,t,p). Then ms,t is a sole
function of θNt

, whereas vs,t is determined by τt and θNt
.

ms,t ≜ |Gt(ws,t,p)|
=

∣∣aH
N,t(p, fs)w

ps(θNt
)
∣∣ (12)

vs,t ≜ ∠Gt(ws,t,p)

= − 2πfsτt + ∠
(
aH
N,t(p, fs)w

ps(θNt
)
)
. (13)

Remark 1 suggests that the array gain maximization can be
split into separate subarray gain maximization problems by
treating ms,t and vs,t as independent variables. Building on
this, we formulate the beamforming optimization problem as

P0 : maximize
π,τ ,{θNt}T

t=1

S∑
s=1

|G(ws,p)|2 (14a)

subject to πl ∈ T ∀l ∈ L . (14b)

To solve P0, we use an alternating approach that first fixes
{θNt

}Tt=1 and optimizes (π, τ ) in a centralized manner. We
then fix (π, τ ) and optimize {θNt}Tt=1 in a distributed manner.

B. Subarray Connection Optimization

For a given (τ , {θNt}Tt=1) = (τ opt, {θopt
Nt

}Tt=1), P0 is
reduced to the subarray connection problem P0,a as

P0,a : maximize
π

S∑
s=1

∣∣aH
N (p, fs)ws

∣∣2 (15a)

subject to πl ∈ T ∀l ∈ L . (15b)

Fig. 1: Illustration of WDAoSA architecture.

Basically, P0,a is a combinatorial optimization problem that
requires an exhaustive search to determine the optimal solu-
tion. To solve the problem at hand, we define a sparse subarray
connection matrix Ẽ ≜ [ ẽ1 ẽ2 · · · ẽL ] where ẽl is a sparse
T × 1 vector such that [ẽl]t = 1 if t = πl and [ẽl]t = 0
otherwise. Then πl can be expressed as πl = supp

(
ẽl
)
.

Using Ẽ, we can re-express ws as ws = AẼTbs where
A ≜ diag

(
wps

(
θopt

))(
IL⊗1K

)
and bs ≜ wttd

s

(
τ opt

)
. Then

we obtain the sparse recovery problem P1,a as

P1,a : maximize
Ẽ

S∑
s=1

∣∣aH
N (p, fs)AẼTbs

∣∣2 (16a)

subject to ∥ẽl∥0 ⩽ 1 ∀l ∈ L (16b)
1T
T ẽl ⩽ 1 ∀l ∈ L (16c)

Unfortunately, P1,a is still nonconvex due to the ℓ0-norm.
To handle this issue, we use reweighted ℓ2-norm approxima-
tion (RLA) that approximates ∥ẽl∥0 into ℓ2-norm as [14]

∥ẽl∥0 ≈ ∥Plẽl∥22 (17)

where Pl ≜ diag(
√
p1,l,

√
p2,l, · · · ,

√
pT,l) and pt,l =

1
|[ẽprev

l ]t|2+ϵ−1 is the RLA weight obtained from Ẽprev of the
previous RLA iteration. By allocating larger RLA weights to
the smaller elements and progressively updating these weights,
RLA penalizes these smaller elements, pushing them toward
zero. By substituting (16b) with (17), we obtain

P2,a : maximize
Ẽ

S∑
s=1

∣∣aH
N (p, fs)AẼTbs

∣∣2 (18a)

subject to ∥Plẽl∥22 ⩽ 1 ∀l ∈ L (18b)
1T
T ẽl ⩽ 1 ∀l ∈ L . (18c)

Since P2,a is still nonconvex, we use successive convex
approximation (SCA) to solve the problem [15]. We first re-
express the objective function (18a) of P2,a as

fa(Ẽ) ≜
S∑

s=1

∣∣aH
N (p, fs)AẼTbs

∣∣2 =
∥∥DTvec(Ẽ)

∥∥2
2

(19)

where Ds ≜
[
ℜ
{(

ATa∗
N (p, fs)

)
⊗bs

}
ℑ{

(
ATa∗

N (p, fs)
)
⊗

bs}
]

and D ≜ [D1 D2 · · · DS ]. Then, for a given Ẽprev of
previous SCA iteration, the linear approximation of fa is



F
(
Ẽ | Ẽprev

)
≜ fa

(
Ẽ
)
+∇T

vec(Ẽ)
f
(
Ẽprev

)
vec

(
Ẽ − Ẽprev

)
= 2

L∑
l=1

dT
l ẽl −

∥∥DTvec
(
Ẽprev

)∥∥2
2

(20)

where DDTvec
(
Ẽprev

)
= [dT

1 dT
2 · · · dT

L ]T. By substituting
f(Ẽ) with F (Ẽ | Ẽprev), we obtain

P3,a : maximize
Ẽ

L∑
l=1

dT
l ẽl (21a)

subject to ∥ẽl∥0 ⩽ 1 ∀l ∈ L (21b)
1T
T ẽl ⩽ 1 ∀l ∈ L . (21c)

Since fa(Ẽ) is convex, F (Ẽ | Ẽprev) ⩽ f(Ẽ) and thus, the
optimal value of P3,a is a lower bound of that of P2,a. When
ignoring (21b), the optimal solution {ẽoptl }Ll=1 of P3,a is

ẽoptl =

{
etmax

if [dl]tmax
> 0

0T otherwise
(22)

where tmax = argmaxt∈T [dl]t. Since ẽoptl has at most
one nonzero element, it satisfies the sparsity constraint (21b),
meaning that {ẽoptl }Ll=1 is the optimal solution of P3,a. The
SCA iterations are repeated until Ẽ converges. Once Ẽ is
obtained, we can get πopt as πopt

t = supp
(
ẽl
)
.

C. TTD Time Delay Optimization

For a given (π, {θNt
}Tt=1) = (πopt, {θopt

Nt
}Tt=1), P0 is

reduced to the time delay control problem P0,b as

P0,b : maximize
τ

S∑
s=1

∣∣∣∣ T∑
t=1

ms,te
jvs,t

∣∣∣∣2 (23a)

subject to vs,t = ∠(aH
N,t(p, fs)w

ps(θopt
Nt

))

− 2πfsτt ∀s ∈ S, ∀t ∈ T (23b)

where ms,t =
∣∣aH

N,t(p, fs)w
ps(θopt

Nt
)
∣∣. Since the elements

of the TTD beamforming vector generated from π have
unit-modulus, one cannot uniquely determine τ due to the
phase ambiguity issue. To handle this issue, we redefine
τ̃ =

[
e−jfcτ1 e−jfcτ2 · · · e−jfcτT

]T
to obtain P1,b as

P1,b : maximize
τ̃∈CT

S∑
s=1

∣∣∣mT
s Psτ̃

(
2π fs

fc

)∣∣∣2 (24a)

subject to |[τ̃ ]t| = 1 ∀t ∈ T . (24b)

Due to the unit-modulus constraints (24b), P3,b is nonconvex.
To address these constraints, we leverage the fact that the
set of unit-modulus vectors lies on a Riemannian manifold,
which is a generalization of Euclidean space that allows the
definition of differentiable structures on curved and abstract
spaces. Specifically, by defining the set of T -dimensional unit-
modulus vectors as CT ≜

{
τ̃ ∈ CT | |[τ̃ ]t| = 1,∀t

}
, P0,b is

recast to the unconstrained problem on CT as

P2,b : maximize
τ̃∈CT

S∑
s=1

∣∣∣mT
s Psτ̃

(
2π fs

fc

)∣∣∣2 (25)

where ms ∈ RT and Ps ∈ CT×T are defined as

ms ≜ [ ms,1 ms,2 · · · ms,T ]T (26)

Ps ≜ diag
(
ej∠(aH

N,1(p,fs)w
ps(θN1

)), ej∠(aH
N,2(p,fs)w

ps(θN2
)),

· · · , ej∠(aH
N,T (p,fs)w

ps(θNT
))
)
. (27)

We provide a brief overview of fundamental concepts from
differential geometry. A Riemannian manifold (M, g) is a
smooth manifold M equipped with a smoothly-varying family
g of positive-definite inner products (i.e., Riemannian metric)
on the tangent space Tp M at each point p ∈ M. A smooth
manifold M is a topological space that locally behaves like
Euclidean space and possesses a smooth structure. The tangent
space Tp M ≜ {γ′(0) | γ : I(⊆ R) → Mγ(0) = p} is
a vector space containing tangent vectors at p. It has been
shown that the tangent space of CT is given by

Tτ̃ CT =
{
p ∈ CT | ℜ

{
[p]∗i [τ̃ ]t

}
= 0, ∀t

}
. (28)

We now describe the Riemannian conjugate gradient (RCG)
method for solving P2,b. Unlike the traditional conjugate
gradient method, it involves two additional steps to find the
optimal solution on the manifold: 1) projection which projects
the search direction onto the tangent space, and 2) retraction
which maps the updated point back onto the manifold.

Lemma 1. The orthogonal projection projTτ̃ CT : CT →
Tτ̃ CT onto the tangent space Tτ̃ CT at τ̃ ∈ CT is defined
as follows [16]:

projTτ̃ CT (p) = p−ℜ
{
p∗ ⊙ τ̃

}
⊙ τ̃ ∀p ∈ CT . (29)

By applying the projection operator, we can determine the Rie-
mannian gradient, which represents the direction of steepest
descent for fb within the tangent space. Since CT is embedded
in CT , the Riemannian gradient is computed by projecting the
Euclidean gradient onto the tangent space.

Lemma 2. Let fb be the objective function of P2,b. Then
the Riemannian gradient grad fb(τ̃ ) of fb at τ̃ ∈ C can
be obtained by projecting the complex Euclidean gradient
∇τ̃fb(τ̃ ) onto the tangent space Tτ̃ C as [16]

grad fb(τ̃ ) = ∇τ̃fb(τ̃ )−ℜ
{
∇τ̃f

∗
b (τ̃ )⊙ τ̃

}
⊙ τ̃ . (30)

Lemma 3. The retraction retrτ̃ : Tτ̃ CT → CT onto CT at
τ̃ ∈CT is defined as follows for all v∈Tτ̃ C [16]:

retrτ̃ (v) =

[
[τ̃+v]1
|[τ̃+v]1|

[τ̃+v]2
|[τ̃+v]2|

· · · [τ̃+v]T
|[τ̃+v]T |

]T
. (31)

The update equations for the conjugate direction di ∈ CT

and τ̃i at the ith iteration are given by

di = grad fb(τ̃i) + βiprojTτi
CT (di−1) (32)

τ̃i+1 = retrτ̃i
(αidi) . (33)

Here, αi is the step size determined by the line search method,
and βi =

∥grad fb(τ̃i)∥2
2

∥grad fb(τ̃i−1)∥2
2

is the Fletcher-Reeves conjugate
gradient parameter. In (32), the projection operator is applied
because di−1 lies in the tangent space Tτ̃i−1 CT of τ̃i−1. Also,



in (33), the retraction operator ensures that τ̃i remains within
CT . The update steps in (32) and (33) are repeated until τ̃i
converges. Once the optimal solution τ̃ opt is found, we obtain
the TTD time delay as τoptt = − 1

fc
∠τ̃optt .

D. PS Phase Shift Optimization

For a given (π, τ ) = (πopt, τ opt), P0 is reduced to the
phase shift control problem P0,c as

P0,c :maximize
{θNt}T

t=1

S∑
s=1

∣∣∣∣ T∑
t=1

ms,te
jvs,t

∣∣∣∣2 (34a)

subject to ms,t =
∣∣aH

N,t(p, fs)w
ps(θNt

)
∣∣

∀s ∈ S, ∀t ∈ T (34b)
vs,t=−2πfsτ

opt
t + ∠(aH

N,t(p, fs)w
ps(θNt

))

∀s ∈ S, ∀t ∈ T . (34c)

Unfortunately, it is not possible to directly decompose P0,c

into subproblems for each θNt
because (34a) is a joint

function of {θNt}Tt=1. To resolve this, we adopt a two-stage
approach: 1) determine {ms,t, vs,t} that maximizes (34a), and
2) individually solve for each θNt

that satisfies (34b) and
(34c). First, by relaxing (34b) and (34c), the optimization
problem for {ms,t, vs,t} is formulated as follows:

P1,c : maximize
{ms,t,vs,t}s,t

S∑
s=1

∣∣∣∣ T∑
t=1

ms,te
jvs,t

∣∣∣∣2 (35a)

subject to 0 ⩽ ms,t ⩽ |Nt| ∀t ∈ T . (35b)

One can easily see the optimal solution for P1,c is given
by mopt

s,t = |Nt| and vopts,t = 0. Using these, we determine
{θNt

}Tt=1 that satisfy (34b) and (34c). Since (34b) and (34c)
are functions only of θNt , the phase shift control problem can
be decoupled into subproblems for each θNt as

P2,c,t :minimize
θNt

S∑
s=1

∣∣∣aH
N,t(p, fs)w

ps(θNt)−|Nt|ej2πfsτ
opt
t

∣∣∣2
(36)

Similar to the time delay optimization, we redefine the opti-
mization variable as θ̃Nt

= [e−jθn | n ∈ Nt]
T ∈ C|Nt| and

reformulate P2,c,t as

P3,c,t : minimize
θ̃Nt∈C|Nt|

S∑
s=1

∣∣∣aH
N,t(p, fs) θ̃Nt − |Nt|ej2πfsτ

opt
t

∣∣∣2 .
(37)

The optimal solution of P3,c,t can be obtained via the RCG
method. Then we get the PS phase shift as θoptn = −∠θ̃optn .
The subarray connection, and time delay and phase shift
optimizations are repeated until (π, τ , {θNt

}Tt=1) converges.

IV. NUMERICAL RESULTS

A. Simulation Setup

In our simulations, we consider a wideband THz ELAA
system where a BS with N = 256 antennas serves a
single-antenna UE by generating frequency-dependent beams
{ws}Ss=1 directed towards the UE. The UE is randomly
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Fig. 2: Array gain as a function of the angle.

placed around the BS within a cell radius of R = 100m.
The number of TTDs and PS subarrays are set to T = 4
and L = 64, respectively. Note that the number of PSs
matches the number of antennas N , meaning each PS subarray
contains K = N

L = 4 PSs. We use a frequency-selective
geometric THz channel model with a carrier frequency of
fc = 100GHz, a bandwidth of B = 20GHz, and S = 128
subcarriers. The number of propagation paths is Np = 4.
As performance metrics, we use the sum of squares of array
gains Gsum = 1

N2

∑S
s=1|aH

N (p, fs)ws|2 and the data rate
R = 1

S

∑S
s=1 log2

(
1 + Ptx

σ2 |hHs ws|2
)

.
For comparison, we use four benchmark schemes: 1) the

fully-digital approximation (FDA) scheme, which iteratively
optimizes both τ and θ [11]; 2) the dynamic-subarray with
fixed TTD (DS-FTTD) scheme, which utilizes a dynamic
subarray architecture between TTDs and PSs with fixed TTD
time delays [12]; 3) the phase-delay focusing (PDF) scheme,
which controls the TTD time delays and PS phase shifts
according to (7) [10]; and 4) the PS-based beamforming
scheme, which generates a frequency-invariant beamforming
vector that is the same for all subcarriers.

B. Simulation Results

In Fig. 2, the UE is positioned at (rue, ϕue) =
(10m, 0.2 rad), and we plot the power of the array gain
|G(w1,p)|2 = 1

N2 |aH
N (p, f1)w1|2 for the 1st subcarrier as a

function of the angle ϕ of p = [ r cosϕ r sinϕ ]T, with r fixed
at r = rue. We observe that the proposed WDAoSA scheme
achieves an array gain of 0.7 near the UE direction (i.e., ϕue =
0.2 rad). Given that the frequency difference between f1 and
fc is nearly 10GHz, the substantial array gain improvement
achieved by WDAoSA is rather unexpected. In contrast, the
conventional PDF scheme exhibits a significantly lower array
gain compared to WDAoSA. Moreover, the direction at which
PDF achieves its maximum array gain is notably misaligned
with the UE direction, indicating that the PDF beam is not
properly directed toward the UE.

In Fig. 3, we plot the sum of squares of array gains Gsum as
a function of system bandwidth B. The proposed WDAoSA
scheme shows a significant improvement in array gain com-
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Fig. 4: Data rate as a function of SNR.

pared to conventional TTD-based beamforming schemes. Fur-
thermore, the array gain enhancement of WDAoSA increases
with larger system bandwidths. For example, when B =
15GHz, WDAoSA achieves an array gain improvement of
about 8.5% over the FDA scheme, which increases to 27.6%
when B = 40GHz. As bandwidth increases, the gap between
carrier and subcarrier frequencies widens, leading to a larger
mismatch between the optimal and generated beams. While
WDAoSA dynamically adjusts the connections between TTDs
and PSs subarrays to mitigate this mismatch, the FDA scheme
lacks such a mechanism, resulting in array gain degradation.

In Fig. 4, we show the data rate as a function of signal-
to-noise ratio (SNR). The proposed WDAoSA scheme con-
sistently outperforms conventional TTD-based beamforming
approaches. For instance, at SNR = 20 dB, WDAoSA achieves
data rate gains of approximately 11%, 31%, and 39% over
the DS-FTTD, PDF, and PS-based beamforming schemes,
respectively. Even compared to the FDA scheme, WDAoSA
provides a data rate gain of about 10%. This strong data
rate performance of WDAoSA can be attributed to two main
factors: 1) the signal power in mmWave and THz bands
is primarily concentrated along the line-of-sight (LoS) path,
and 2) WDAoSA generates highly focused beams precisely
directed toward the UE.

V. CONCLUSION

In this paper, we introduced a TTD-based wideband beam-
forming scheme called WDAoSA, which dynamically re-
configures the connections between TTDs and PS subarrays
through a switch network. Unlike conventional TTD-based
beamforming schemes, where fixed subarray connections re-
sult in unavoidable sidelobe leakage and array gain degrada-
tion in subcarrier beams, WDAoSA optimizes the subarray
connections, TTD time delays, and PS phase shifts to max-
imize array gain. To achieve this, we developed both cen-
tralized and distributed beamforming optimization techniques
that jointly adjust the subarray connections, TTD time delays,
and PS phase shifts. Numerical results show that WDAoSA
provides over 40% improvement in array gain compared to
conventional TTD-based beamforming schemes.
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