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Abstract—With the advent of cooperative intelligent transport
systems (C-ITS) and vehicle-to-everything (V2X) communications,
cooperative positioning based on V2X sharing of location infor-
mation has been emerging as a promising augmentation system
for conventional satellite navigation. An example is implicit co-
operative positioning (ICP) which relies on Bayesian filtering for
cooperative sensing of targets that are used as reference points for
improving vehicle positioning. ICP methods, however, rely on pre-
determined models which makes them sub-optimal in case of non-
Gaussian non-linear models or complex cooperation graphs. To ad-
dress these limitations, the paper proposes a decentralized-partially
observable Markov decision process (Dec-POMDP) framework,
paired with deep multi-agent reinforcement learning (MARL) al-
gorithms. We introduce a novel ICP-multi-agent proximal policy
optimization (MAPPO) algorithm where distributed agents (i.e.,
vehicles) dynamically activate/deactivate the radio links for cooper-
ation with the neighbors to optimize the communication efficiency,
still guaranteeing accurate positioning. We reproduce a realis-
tic C-ITS scenario with CARLA simulator, where vehicles move
according to real-world dynamics and communicate with each
other to cooperatively sense their locations. Results show that the
proposed ICP-MAPPO algorithm, with its dynamic-decentralized-
execution and centralized-training schemes, outperforms state-of-
the-art ICP methods by 21% in terms of positioning accuracy, and
it can reduce the communication overhead by following the optimal
learned policy.

Index Terms—MARL, Dec-POMDP, implicit cooperative
positioning, Bayesian-filtering, message passing algorithm.
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I. INTRODUCTION

COOPERATIVE positioning (CP) represents a key enabling
feature for future automated mobility services [1], [2],

[3], [4], [5], [6], [7], [8]. Automated vehicles leverage an on-
board sensor suite including global navigation satellite systems
(GNSS), light detection and ranging (LIDAR), radio detection
and ranging (RADAR), and stereo cameras to perceive the sur-
rounding environment and perform automated maneuvers [9],
[10], [11], [12], [13]. At today, these sensors are not yet able
to guarantee high-precision localization in harsh environments
such as dense urban areas or canyons and this is a main is-
sue for autonomous driving functions [14]. Recently, methods
have been proposed to combine localization sensors with the
latest 5th generation (5G) of cellular communications [15],
[16], [17], [18], [19], [20], depicting a new horizon for mobile
connectivity and positioning services [21], [22], [23], [24]. 5G
vehicle-to-everything (V2X) communications are envisioned as
crucial in the evolution towards cooperative intelligent transport
systems (C-ITS) [25], [26], [27], [28] by enabling simultaneous
communication and localization functionalities [29], [30], [31].
CP among vehicles, by means of sidelink V2X communications,
can be used to overcome the GNSS performance degradation
and guarantee a seamless high-accuracy positioning (HAP)
service [32], [33], [34], [35], [36]. The complexity lies in the
resource-intensive nature of CP [37], which involves vehicles
interacting with each other repeatedly to determine positions. In
particular, this cooperative process demands significant power
and bandwidth [38], [39], [40], while also facing challenges
in scheduling transmissions due to the intricate measurement
and information fusion processes [41], [42], [43]. These factors
may cause larger delays and scalability issues in cooperative
localization [44], [45].

An emerging approach for cooperative vehicle localization
is implicit cooperative positioning (ICP) [32], [46], which
integrates GNSS and onboard passive sensor data through
Bayesian-filtering, e.g., conventional extended Kalman filter
(EKF) or message passing algorithm (MPA), to coherently fuse
the measurements at different vehicles. In ICP, passive objects
such as poles, road signs, or traffic lights, are cooperatively
detected by multiple vehicles and exploited as noisy anchor
points to enhance the vehicle location accuracy. In case of a
centralized data-processing architecture gathering all vehicles’
measurements, convergence can be achieved, but at the expense
of high computational complexity. Standard MPA algorithms
enable decentralized processing but are optimal only in case
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of Gaussian-linear models and acyclic factor graphs [47], [48],
[49], [50]. Recent solutions tried to limit the aforementioned
problems by either performing fully-distributed particle-based
MPA between vehicles [34] or auto-adjusting the parameters
of time-varying models [51]. Still, they rely on particle-based
solutions which require high communication and computational
loads which limit their scalability.

In recent years, there has been a growing reliance on machine
learning (ML) tools to overcome the limits of conventional
approaches, especially regarding scalability and non-linear mod-
els [52], [53], [54], [55]. In particular, the reinforcement learning
(RL) paradigm [56], [57], [58] and its deep learning (DL)-based
version [59], [60], [61] are notably effective in challenging
single-agent Markov decision processs (MDPs) where labeled
data are scarce or costly. They also excel in environments where
the agent’s actions directly impact the state of the environment
and long-term rewards are prioritized [62], [63], [64]. Indeed,
RL can be seen as a generalization of Bayesian filtering where
the agents do not just predict the state through belief computation
but also make decisions to optimize the cooperative process
by maximizing long-term rewards, with a policy guiding the
decision from state to action. RL is especially well-suited for
complex scenarios with extensive state and action spaces, where
deep neural networks (DNNs) can efficiently approximate the
high-dimensional, nonlinear functions that represent such poli-
cies [59], [65]. This approach has been successfully applied in
several fields, varying from rate and power control [66], [67],
[68], [69] to dynamic spectrum access in multi-user scenarios
and efficient scheduling in vehicular networks [70], [71], [72],
[73].

In case more than one agent acts in the environment and
the state is not directly observable, we categorize the frame-
work as multi-agent RL (MARL) [74] and the system as
decentralized-partially observable MDP (Dec-POMDP) [75],
[76], [77]. MARL involves independent agents whose actions
influence each other’s perception of the environment, and it is
often solved with the usage of recurrent neural network (RNN),
exploiting histories of observations and actions [78]. MARL
algorithms, similarly to RL methods, can be divided into two
categories: Q-learning and policy optimization (PO) (which
comprises actor-critic methods) [79], [80], [81]. Q-learning
focuses on estimating the long-term reward (i.e., Q-value) of
each action, selecting the action with the highest Q-value and
indirectly (i.e., not explicitly) formulating the policy [82], [83],
[84]. On the other hand, PO directly optimizes the policy through
the gradient of the total reward relative to policy parameters [85],
[86], [87], [88]. Multi-agent PO algorithms, especially when
combined with a centralized agent learning and a decentralized
execution of the policies (e.g., multi-agent proximal policy opti-
mization (MAPPO) [85]), have shown remarkable performances
with respect to Q-learning algorithms. This is mainly due to
their being free of learning biases and improved sampling effi-
ciency thanks to training guidelines like parameter sharing [89],
[90], [91].

First attempts to employ MARL for CP focus on target
tracking by intelligent and connected unmanned aerial vehicles
(UAVs) [92] or on agent scheduling for improving CP [93].

In [92], the RL objective was to maneuver the agents to track
passive objects. However, they considered the state (i.e., the loca-
tion) of the agents as perfectly known, while the main challenge
was to estimate from the measurements their state jointly with
target sensing. In [93], the agent state was estimated with con-
ventional MPA, while the RL objective was to activate/deactivate
links between agents to optimize cooperative positioning perfor-
mances (i.e., by minimizing the positioning error bound (PEB)).
The drawbacks of this method are that RL is not actively used
for positioning but rather as an assistance method to MPA, and
that they consider one agent only, i.e., a single link, at the time
instead of exploiting the full potential of multi-agent systems
(MASs).

Overall, the fundamental unresolved questions related to CP
are as follows: i) how to design a decentralized MARL algorithm
that simultaneously performs the computation of the agent state
beliefs and the scheduling of the agent-to-agent communication
resources, optimizing both location accuracy and communica-
tion efficiency; ii) what positioning accuracy improvement can
be achieved with respect to state-of-the-art Bayesian approaches
like ICP that exploit passive object detections between multiple
agents; iii) what are the main trade-offs between positioning
improvement and communication resource optimization. Ad-
dressing these questions is mandatory for the employment in
connected automated vehicles (CAVs), in particular to ensure
scalability and handle real-word impairments encountered in
vehicular scenarios. In this perspective, the goals of this paper are
to develop agent-specific policies for communication scheduling
between neighbors and, at the same time, learning a representa-
tion of the system dynamics that takes advantage of the selected
neighbors’ measurements. We propose a MARL-based ICP, a
new paradigm in which PO RL algorithms are exploited to ex-
tend the conventional Bayesian-filtering approach incorporating
the actions of the agents. The main idea is to learn from data the
relation between agents’ states and passive feature observations
(see Fig. 1 for a representation of the cooperative scenario) by
selecting for the cooperation only those links to the neighbors
that can provide a significant gain to the positioning accuracy.
This approach is shown to not only improve the localization
performance but also enhance the communication efficiency. In
this paper, we propose a new MARL algorithm, namely ICP-
MAPPO, expressly designed for performing efficient distributed
positioning through the MARL framework and extending the
conventional Bayesian-filtering ICP to data-driven approaches.
The key contributions are as follows:
� We revise the ICP Bayesian-filtering approach analyz-

ing the current limitations and investigating more general
frameworks for solution, drawing from the Dec-POMDP
system model and MARL methods.

� We reformulate the ICP methodology into a MARL prob-
lem and we design the new ICP-MAPPO solution, re-
lying on dynamic-decentralized-execution and training
schemes to simultaneously optimize the Bayesian-filtering
and MARL objectives.

� We validate the proposed ICP-MAPPO approach in a
realistic C-ITS scenario simulated with CARLA [94],
where CAVs perform CP by cooperatively localizing
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Fig. 1. Cooperative positioning scenario with twenty vehicles (blue vehicle
icons), sensed poles acting as ancors (red circles) and detections (black lines).

TABLE I
MAIN ABBREVIATIONS

passive targets, i.e., poles, distributed over the scene and
acting as anchors.

� We perform a comparison with the state-of-the-art ICP
algorithm [32] and single-agent-based algorithms. We
prove the superior performances of the proposed algorithm
both in terms of positioning error and communication
efficiency.

For easy reference, Table I lists the main abbreviations used
throughout the paper. The rest of this paper is structured as
follows. Section II describes the system model of cooper-
ative agents. Section III reviews the ICP Bayesian-filtering.
Section IV presents the MARL framework and the proposed
ICP-MAPPO execution and training schemes. Section V pro-
vides information about the simulated scenario and the results.
Finally, Section VI draws the conclusions.

TABLE II
LIST OF NOTATIONS

I. Notations

Random variables are displayed in sans serif, upright fonts;
their realizations in serif, italic fonts. Vectors and matrices are
denoted by bold lowercase and uppercase letters, respectively.
For example, a random variable and its realization are denoted
by x and x; a random vector and its realization are denoted by
x and x; a random matrix and its realization are denoted by
X and X , respectively. Random sets and their realizations are
denoted by up-right sans serif and calligraphic font, respectively.
For example, a random set and its realization are denoted by X
and X , respectively. The function px(x), and simply p(x) when
there is no ambiguity, denotes the probability density function
(PDF) of x. Notations X�, X∗ and XH indicate the matrix
transposition, conjugation and conjugate transposition. With the
notation x ∼ N (μ, σ2) we indicate a Gaussian random variable
x with mean μ and standard deviation σ, whose PDF is denoted
byN (x;μ, σ2). We use E{·} and V{·} to denote the expectation
and the variance of a random variable, respectively. R and C

stand for the set of real and complex numbers, respectively.
Finally, we define with blockdiag(·) the block diagonal matrix
whose diagonal contains the input blocks matrices.

Notations and definitions of important quantities used in the
paper are summarized in Table II.

II. SYSTEM MODEL

We consider a vehicular network where a set of N vehicles
engage in cooperative localization as depicted in Fig. 1. The
connectivity graph for vehicle cooperation at time t is Gt =
(V, Et), with V = {1, 2, . . . , N} representing the set of agents
(vehicles), and Et the edges (communication links) among them.
Each agent i ∈ V in the network at time t has a set of neighbors

Ni,t, and it is assigned a state s
(A)
i,t = [u

(A)�

i,t v
(A)�

i,t ]�, where

u
(A)
i,t and v

(A)
i,t are the 2D position and velocity vectors, respec-

tively, defined in a global coordinate system. We denote with
s
(A)
t = [s

(A)
i,t ]Ni=1 the aggregate state of all the vehicles at time t.

The kinematic state transition of vehicle i at time t is modelled
as

s
(A)
i,t = f (A)

(
s
(A)
i,t−1,w

(A)
i,t−1

)
(1)
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where f (A)(·) is is a nonlinear function that governs the dy-
namics of the vehicle’s state and w

(A)
i,t−1 represents the driving

noise process, incorporating the uncertainty in motion. The
model in (1) is associated to a state-transition PDF denoted as
T
(
s
(A)
i,t |s(A)

i,t−1
)
� p

(
s
(A)
i,t |s(A)

i,t−1
)
.

The scenario includes a set F = {1, 2, . . . ,K} of K static
and passive objects (or targets, denoted as red circles in Fig. 1)
that vehicles can detect and localize by on-board sensors. To
facilitate detection by vehicle sensors, specific objects easily
identifiable and suitable for the purpose should be used. In this
study, poles have been selected due to their ubiquity (especially
in urban areas), ease of recognition, and fixed nature. Each pole
k is described by a 2D position state s(T)

k,t , which is assumed to be

constant over time. As before, we denote with s
(T)
t = [s

(T)
k,t ]k∈F

the aggregate state of all passive objects at time t.
Vehicles are equipped with three distinct types of sensors. The

first is a GNSS receiver, providing an estimate of the vehicle’s
state s

(A)
i,t , modelled as

o
(GNSS)
i,t =H(GNSS) s

(A)
i,t + n

(GNSS)
i,t (2)

where n
(GNSS)
i,t ∼ N (02×2,R

(GNSS)
i,t ) ∈ R

2×1 is a zero-mean

Gaussian noise with covariance R
(GNSS)
i,t = σ(GNSS)2I2,

and H(GNSS) = [I2 02×2] ∈ R
2×4. From (2), we define the

GNSS likelihood function as p(o
(GNSS)
i,t |s(A)

i,t ), and with

o
(GNSS)
t = [o

(GNSS)
i,t ]Ni=1 the aggregate GNSS measurements of

all the vehicles at time t.
The second sensor refers to an active sensing technology

for sidelink positioning offering relative agent-to-agent (A2A)
location measurements for any pair of vehicles (i, j) ∈ Et

o
(A2A)
i,j,t =H(A2A)

(
s
(A)
i,t − s

(A)
j,t

)
+ n

(A2A)
i,j,t (3)

where H(A2A) = [I2 02×2] ∈ R
2×4 and n

(A2A)
i,j,t ∼ N (02×2,

R
(A2A)
i,j,t ) is a zero-mean Gaussian noise with covariance

R
(A2A)
i,j,t = σ(A2A)2I2. Additionally, agents have the capability

to communicate with their neighbors to share location-related
data.

The third sensor type is a passive technology (e.g., RADAR,
LIDAR, camera, or any combination), used by vehicle i to detect
a set of passive objects Fi,t ⊆ F in proximity at time t, and
produce agent-to-target (A2T) measurements for each object
k ∈ Fi,t as

o
(A2T)
i,k,t =H(A2T)s

(A)
i,t − s

(T)
k,t + n

(A2T)
i,k,t (4)

where H(A2T) = [I2 02×2] ∈ R
2×4 and n

(A2T)
i,k,t ∼ N (02×2,

R
(A2T)
i,k,t ) is a zero-mean Gaussian noise with covariance

R
(A2T)
i,k,t = σ(A2T)2I2.

We denote with p(o
(A2A)
i,j,t |s(A)

i,t , s
(A)
j,t ) and p(o

(A2T)
i,k,t |s(A)

i,t ,

s
(T)
k,t ) the A2A and A2T likelihoods, respectively. Moreover,

we denote with oi,t = [o
(GNSS)
i,t

�
o
(A2A)
i,t

�
o
(A2T)
i,t

�
]� the vector

of all available measurements of vehicle i at time t, where

o
(A2A)
i,t = [o

(A2A)
i,j,t ]j∈Ni,t

ando(A2T)
i,t = [o

(A2T)
i,k,t ]k∈Fi,t

. The total
number of unique A2A and A2T measurements at time t is
defined as N

(A2A)
t =

∑N
i=1 |Ni,t| and N

(A2T)
t =

∑N
i=1 |Fi,t|,

respectively. Note that the A2A measurements are not subject
to measurement-origin uncertainty, i.e., it is not requested to
perform any data association algorithm for pairing them, as
the enabling technology is assumed to be active. On the other
hand, the A2T observations are unlabelled, as it is unknown
which object gives rise to a measurement, being them produced
by a passive sensing technology (e.g., RADAR or LIDAR). In
this work, we assume that data association has already been
performed at the vehicles (using, e.g., methods [53]) and that
each A2T measurement has been correctly labeled with the
originating target. We consider perfect data association as we
aim to derive the best-case performances on the achievable
accuracy of data-driven ICP and compare it with conventional
Bayesian ICP in the same conditions. Interested readers can
refer to [46] for details on data association and their impact
on inference algorithms.

III. BAYESIAN FILTERING

In this section, we describe the Bayesian filtering solution,
under the ICP framework, and then we highlight its main draw-
backs and improvements.

A. Centralized Implicit Cooperative Positioning

The objective of ICP is to concurrently estimate the state of
all vehicles and passive objects in the network. To this aim, we
define the set of all available measurements at time t as

ot =H st + nt (5)

where ot = [oi,t]i∈V ∈ R
(2N+2N

(A2A)
t +2N

(A2T)
t )×1, H is the

matrix modeling the relation to the states, defined as in [32],

and st = [s
(A)
t

�
s
(T)
t

�
]� ∈ R

(4N+2K)×1 is the aggregated state
of the system. nt ∼ N (0,Rt) is the overall measurement noise
with covariance

Rt = blockdiag
(
R

(GNSS)
t , R

(A2A)
t ,R

(A2T)
t

)
where

R
(GNSS)
t = blockdiag

(
R

(GNSS)
1,t , R

(GNSS)
2,t , . . . ,R

(GNSS)
N,t

)
R

(A2A)
t = blockdiag

(
R

(A2A)
1,t , R

(A2A)
2,t , . . . ,R

(A2A)

N
(A2A)
t , t

)
R

(A2T)
t = blockdiag

(
R

(A2T)
1,t , R

(A2T)
2,t , . . . ,R

(A2T)

N
(A2T)
t , t

)
with the �-th entries given by R

(A2A)
�,t = R

(A2A)
i�,j�,t

and

R
(A2T)
�,t = R

(A2T)
i�,k�,t

.
The overall state estimate ŝt is obtained through the minimum

mean square error (MMSE) estimator as

ŝt = E{st|o1:t} =
∫
st p (st|o1:t) dst (6)
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where o1:t = [ot′ ]
t
t′=1 is the set of all aggregated measurements

up to time t and p(st|o1:t) is the posterior PDF defined as [95]

p (st|o1:t) ∝ p (ot|st)
∫

p (st|st−1) p (st−1|o1:t−1) dst−1 .
(7)

We denote with b(si,t|o1:t) � p(si,t|o1:t) the marginal pos-
terior PDF, also called belief of agent i. Given that all the
measurements are mutually independent, the likelihood function
of st is computed as

p (ot|st) = p
(
o
(GNSS)
t |s(A)

t

) N∏
i=1

∏
j∈Ni,t

p
(
o
(A2A)
i,j,t |s(A)

i,t , s
(A)
j,t

)

×
N∏
i=1

∏
k∈Fi,t

p
(
o
(A2T)
i,k,t |s(A)

i,t , s
(T)
k,t

)
.

(8)

For notation purposes, we will denote the likelihood function
also as O(ot|st) � p(ot|st). In case the dynamic and measure-
ments models in (1) and (5), respectively, are linear and with a
Gaussian noise, the state estimate in (6) reduces to a Kalman
filter (KF) as described in [32], [46], with efficient resolution in
matrix form.

B. Limitations of Bayesian ICP Methods

The centralized ICP approach is impractical for extensive
networks due to the following major limitations: the single
central computing unit representing a point of failure, and its
computational complexity growing cubically with the number of
vehicles and passive objects [32]. To overcome such limitations,
distributed or consensus-based ICP algorithms have been studied
in the past [34]. However, their convergence to the centralized
solution is guaranteed only in acyclic (i.e., tree-structured) factor
graphs. Moreover, even in case of convergence, the result would
be optimal only with Gaussian and linear models (i.e., in (1)
and (5)). In all the other cases, optimality is not guaranteed. In
Fig. 2 we summarized all cases and highlighted those where
improvements could be provided by new data-driven designs.
We point out that in real-world dynamics, the factor graph is
usually not acyclic and the models are typically neither Gaussian
nor linear.

The aim of this paper is to address the gap by proposing a
new decentralized data-driven solution to the ICP problem suited
for non-linear non-Gaussian models, overcoming the limits of
parametric Bayesian implementations based on EKF or particle
filter (PF) highlighted in Fig. 2. The proposed distributed method
also incorporates a data-driven optimization of the cooperation
graph by making the agents actively and opportunistically select
the cooperating neighbors so as to minimize the communication
signaling. In particular, to address the limitations of conven-
tional ICP solutions, we adopt neural networks (NNs)-based
models, which are able to learn whatever non-linear function
is hidden in the data thanks to the universal approximation
theorem. Specifically, a RNN learns the non-linear motion and
measurement models, whereas a multi-layer perceptron (MLP)

Fig. 2. Convergence conditions and optimality in ICP methods.

learns the non-linear relation between link activation and state
estimate. Moreover, NNs have proven effective even in non-
Gaussian settings [53], given their ability to model complex
probability distributions without assuming any specific form.
The centralized ICP method reviewed in this section will be
used as a benchmark to assess the proposed method.

IV. MARL FOR COOPERATIVE POSITIONING

In this section, we first introduce the MARL framework
(Section IV-A) that will be used later for the design of the ICP-
MAPPO solution (Section IV-B). The ICP-MAPPO execution
and training schemes are reported in Sections IV-C and IV-D,
respectively.

A. MARL Framework

We model the cooperative MAS as a finite-
horizon Dec-POMDP [75] defined by the tuple 〈V,S,
A, T0, T,O, O,R, γ,H〉. We recall that the set V refers to
the cooperative agents, while the sets S and A denote the state
and action spaces, respectively. T0 is the initial state distribution
at time t = 0, while T (st|st−1,at) � p(st|st−1,at) is the
state transition PDF that, differently from the Bayesian-filtering
system model in Section II, now also includes the joint action
realization at = [ai,t]i∈V ∈ A and the joint state st ∈ S .
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Fig. 3. Comparison between Bayesian filtering and RL.

At each time t, the agents receive the joint observations
or measurements ot ∈ O which are sampled from the
distribution O(ot|at−1, st) � p(ot|at−1, st). Note that here,
(8) is also function of the previous joint action of the agents
at−1, thus generalizing the concept of Bayesian-filtering.
R(st, at) = rt ∈ R denotes the instantaneous shared reward at
time t obtained from the reward function R, while γ ∈ [0, 1)
and H are the discount factor and time horizon of each episode,
respectively.

Since the rewards and states are not directly observable by
the agents, the system is a partially observable MDP, where
each agent i needs to keep track of the so-called histories
defined as hi,1:t = hi,t = [(ai,t′−1,oi,t′)]tt′=1. Note that the
histories are a generalization of the aggregated measurements
up to time t in (6). Given a new observation oi,t, the state
estimates ŝi,t are produced by MMSE criterion from the belief
PDF bψ(si,t|oi,t,ai,t−1,hi,t−1) = pψ(si,t|oi,t,ai,t−1,hi,t−1)
parameterized by ψ. Moreover, agents adopt a policy
πθ(ai,t|hi,t) = pθ(ai,t|hi,t) defined by θ to obtain the action
ai,t from histories hi,t. A full comparison between Bayesian
filtering and RL (i.e., its generalized version) can be found in
Fig. 3. By defining the reward-to-go Rt =

∑H−1
t′=t γt′−t rt′ as

the cumulative discounted reward from time t to the end of the
episode, the objective of the MARL problem is to maximize,
over the policy π, the expected cumulative discounted reward
from the beginning of the episode

max
π

J(π) = max
π

E{R0} (9)

which usually translates into optimizing the parameters of the
policy as θ∗ = argmaxθJ(πθ), with π∗θ representing the opti-
mal policy.

B. MARL Solution to the ICP Problem

In standard Dec-POMDP, each agent only knows its lo-
cal actions and observations, thus resulting in possible non-
stationary learning problems from each agent’s perspective [96].
By training independent learners to optimize the team reward
(i.e., concurrent learning), we induce a change in the dynam-
ics of the environment as teammates continuously adapt their
behaviours throughout learning. On the contrary, whenever a
fully connected graph with communications is present, the Dec-
POMDP collapses to a centralized POMDP, resulting in higher
complexity and communication inefficiencies [89], [97], exactly
as in centralized ICP. To solve the issues of independent and
centralized training-execution, the state-of-the-art works exploit
the so called centralized-training and decentralized-execution
paradigm. This framework permits to learn the policies in a
centralized way and then deploy them in the network graph for
decentralized execution [85], [87], [98].

While this approach solves the problem in standard MARL
algorithms, in the context of ICP, having access to the neighbors’
measurements would allow the positioning accuracy to be sig-
nificantly improved. Indeed, the objective of ICP is to minimize
over the belief b the error on the state estimate as

min
b

J(b) = min
b

E

{∑
t

∥∥st − ŝt∥∥22}. (10)

Therefore, we here propose to define as actions the agent’s
selection of the communication links to the neighbors to cooper-
ate with. This allows to optimize the communication efficiency
with respect to the centralized solution. Formally, we define the
following Dec-POMDP:

1) Agents: The agent is identified by vehicle i ∈ V that com-
poses the connected network.

2) Actions: The action of agent i at time t isai,t = [ai,j,t]
N
j=1,

where ai,j,t ∈ {0, 1} represents the Boolean decision of agent i
to communicate with agent j.

3) States: Only the states of the vehicles s(A)
t are considered,

while the target states s
(T)
t are implicitly learned by the NNs

through the hidden features. Indeed, the system does not output
or keep track of the states of the targets, since they are not needed
as in the ICP Bayesian filtering formulation. In other words,
the ICP-MAPPO model just outputs the predicted states of the
agents, while the targets’ states are contained in the hidden space,
i.e., histories. Therefore, from now on, we indicate with st the
state of the agents s(A)

t .
4) Observations: GNSS, A2A, and A2T measurements de-

scribed in Section II are the observations used in the Dec-
POMDP modeling, as they are the only output returned by the
world at inference time.

During the centralized training, the agents learn the rela-
tion between histories-actions, i.e., policy optimization, and
histories-states, i.e., belief optimization, while having access to
the full observable state st and measurements ot. Conversely,
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Fig. 4. Dynamic-decentralized-execution scheme of the proposed ICP-MAPPO algorithm.

during the decentralized execution, the agents decide how to
modify the network graph to achieve the best trade-off between
positioning accuracy and communication efficiency. We call
this approach centralized-training and dynamic-decentralized-
execution, as during execution, according to the agents’ actions,
the coordination graph may vary, passing from fully-connected
to fully-decentralized according to the agent’s decisions.

C. ICP-MAPPO Execution Scheme

For belief and action prediction, we propose to employ long
short-term memory (LSTM) and MLP, respectively. In Fig. 4,
we show a compact representation of the execution within each
agent. In particular, the NN functions are defined as

ŝi,t,h
b
i,t = bψ(si,t|oi,t, āi,t−1, h̄b

i,t−1) (11)

ai,t ∼ πθ(ai,t|hb
i,t) (12)

where oi,t is the ordered vector of all measurements of agent i
at time t defined as in Section II, āi,t = [āi,j,t]

N
j=1 includes the

sampled actions from the policy distribution adjusted with the
feasibility of the network connectivity as

āi,j,t =

{
ai,j,t if j ∈ Ni,t

−1 otherwise
(13)

and h̄b
i,t are the hidden features of the belief LSTM which

contain a compressed representation of the histories of agent
i and all selected neighbors at the previous timestep

h̄b
i,t =

hb
i,t +

∑
j∈V h

b
j,t 1(āi,j,t == 1)

1 +
∑

j∈V 1(āi,j,t == 1)
(14)

where1(·) is the indicator function that returns 1 if the condition
is true and 0 otherwise. We point out that the hidden features
hb
i,t include not only past actions and measurements but also

the implicit state estimates of the targets ŝ(T)
t , which are never

explicitly predicted by the system for output space complexity
reduction.

The key rationale behind the proposed execution scheme is
the following. We employ the average operation in (14) to avoid
gradient divergence over the timesteps. Furthermore, the action
decision at time t in (12) is mainly based on the previous timestep
information h̄b

i,t−1, as there is no way for agent i to know a

priori the measurements of its neighbors hb
j,t , ∀j ∈ V , in order

to activate the communications between them. Moreover, the
actions āi,t are given as input to the belief LSTM for two main
reasons. First, the information about which agents were selected
for measurements fusion is necessary to coherently predict the
state estimate. Second, the negative action values imposed by
the lack of possible connectivity permit each agent to implicitly
learn its index or identification. In this way, the scalable and
efficient parameter sharing approach for training one single
NN [89], instead of agent-specific NNs, can be combined with
agent differentiation by index learning.

D. ICP-MAPPO Training Scheme

For the reward definition, we propose to use a function that,
looking at the future timestep, rewards the actions that gave
a predetermined improvement β on the positioning accuracy.
In other words, each agent i tries to answer the following
question: if I had chosen agent j ′ instead of agent j, would
the performances have improved? This is formalized as

rt =

⎧⎪⎪⎨⎪⎪⎩
−1 if

∥∥st − ŝt∥∥22 − ∥∥st+1 − ŝt+1

∥∥2
2
≤ −β

+1 if
∥∥st − ŝt∥∥22 − ∥∥st+1 − ŝt+1

∥∥2
2
> β

+2 if − β <
∥∥st − ŝt∥∥22 − ∥∥st+1 − ŝt+1

∥∥2
2
≤ β

(15)

where β is a hyper-parameter which regulates the improvement
step. At the beginning of the learning, if the improvement is
negative and bigger than β, the reward is negative as the actual
agent selection worsen the positioning accuracy. On the other
hand, if the improvement is positive and greater than β, the
reward is +1. Finally, when the learning starts converging and
the improvements become smaller, we introduce a long-term
reward of +2. Note that, while in conventional Dec-POMDPs the
reward directly depends on the actions, in the proposed system
the effect of the actions’ choice can be assessed only at the next
timestamp and only by measuring the positioning error.

Regarding the selection of MARL algorithm, we opted for
PO over Q-learning-based methods. This is because Q-learning
algorithms combined with DL have no guarantees of conver-
gence and retain a lot of bias (i.e., inaccurate state-action value
or Q-value). On the contrary, PO algorithms retain very low
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bias since they directly optimize the objective function in (9)
and have been proven to outperform Q-learning methods in
MARL systems [87]. Moreover, while off-policy RL algorithms
use historical data to learn the policy, in the context of CP,
where state estimation is crucial, it is essential to utilize the most
up-to-date policy available since the action sampling (i.e., radio
link activation) directly influences the positioning performances.
Despite PO algorithms having an intrinsic high variance, i.e.,
they require a lot of samples to converge, this can be mitigated by
the learning of the value function, either V π(st) or Qπ(st,at),
which estimates the long-term reward given a specific state or
state-action pair, respectively. Specifically, we employ the state
value function defined as

V π(st) = E{Rt|st = st}

= Eat∼π,st+1∼T
{
R(st, at) + γV π(st+1)

}
. (16)

Usually, V π(st) cannot be directly computed due to the curse
of dimensionality and thus it is estimated by an additional NN
V̂φ(st) = Vφ(st), with parameters φ which are only employed
during training.

In standard single-agent RL frameworks, the policy opti-
mization problem is usually defined with the introduction of
trajectories τ = (s0, a0, . . . , sH , aH) by maximizing

J(πθ) = Eτ∼p(τ |πθ)

{
R̃(τ )

}
=

H∑
t=0

Est∼p(st|πθ),at∼πθ(at|st)
{
γt R(st, at)

}
(17)

where R̃(τ ) = R0 is the reward of trajectory τ ,
p(τ |π) = T0

∏H−1
t=0 T (st+1|st,at)π(at|st) is the PDF of

an H-step trajectory, and p(st|π) is the state marginal of
the trajectory distribution induced by policy π. Standard
REINFORCE PO algorithms [99] update the policy parameters
in (17) in the direction of ∇θ J(πθ), which can be written as
(see Appendix A)

∇θ J(πθ) = E(st,at)∼p(st,at|πθ)

{H−1∑
t=0

∇θ log
(
πθ(at|st)

)
At

}
(18)

where p(st,at|πθ) is the state-action marginal of the trajectory
distribution induced by policy π and At = At(st, at) is the
generic advantage function at time t [100], which quantifies the
convenience of taking a specific action at in a given state st,
compared to the average action’s expected return for that state.

During successive optimization steps of (18) within the same
trajectory, where the objective is to maintain proximity between
new and old policy parameters, even minor variations in the NN
weights can lead to significant differences in performance. Con-
sequently, a single unfavorable optimization step can drastically
deteriorate the policy’s effectiveness. Recent state-of-the-art
methods, e.g., trust region policy optimization (TRPO) [101]
and proximal policy optimization (PPO) [102], tried to solve
this problem by taking the largest gradient step size possible
to improve performance, while maintaining constraints on how

close the new and old policies (i.e., πθold at previous train
step) are allowed to be. The constraint in TRPO is enforced
by Kullback–Leibler (KL) divergence and the parameters are
obtained by maximizing the surrogate objective function as

θ = argmaxθ E(st,at)∼p(st,at|πθ)

{ πθ(at|st)
πθold(at|st)At(st, at)

}
s.t. Est∼p(st|πθ)

{
DKL

(
πθ(·|st)

∥∥πθold(·|st)
)} ≤ ε

(19)

which resulted in a second-order optimization method. On the
contrary, PPO and its recent multi-agent version MAPPO use
a much more efficient first-order method that exploits clipping
to remove incentives for the new policy to get far from the old
policy.

In this paper, we adopt three loss functions: L(φ) and L(θ)
derived from the MAPPO scheme to train the state-value and
policy NNs, respectively, and L(ψ) to train the belief NN. πθ
and Vφ are called actor and critic, respectively, since the actor is
responsible for selecting actions based on the current policy, and
the critic evaluates the quality of these actions by estimating the
value function. In Dec-POMDP, the critic Vφ is also dependent
on the history of action-observation pairs and thus it is usually
modelled with a RNN as

V̂φ
(
si,t,h

V
i,t−1

)
,hV

i,t = Vφ
(
si,t,h

V
i,t−1

)
(20)

wherehV
i,t are the hidden features of the critic. Given a trajectory

of length Lτ (subset of the horizon length H), L(φ) is defined
to perform regression on the rewards-to-go as

L(φ) =
1

NLτ

∑
i∈V

Lτ∑
�=1

{
max

([
V̂φ

(
si,�,h

V
i,�

)−R�

]2
,

[
clip

(
V̂φ

(
si,�,h

V
i,�−1

)
, V̂φold

(
si,�,h

V
i,�−1

)
, ε
)
−R�

]2 )}
(21)

where the clip prevents the value function from radically chang-
ing between iterations, and it is defined as

clip
(
A,B, ε

)
= min

(
max

(
A,B − ε

)
, B + ε

)
(22)

where ε is the clip coefficient.
The actor πθ is also trained with clipping to discard the KL

constraint in (19) by minimizing

L(θ) = − 1

NLτ

∑
i∈V

Lτ∑
�=1

{
min

(
πθ(ai,�|hb

i,�)

πθold(ai,�|hb
i,�)

Âi,�,

clip
( πθ(ai,�|hb

i,�)

πθold(ai,�|hb
i,�)

, 1, ε
)
Âi,�

)
+ αS

(
πθ(·|hb

i,�)
)}

(23)

where Âi,� = R� − V̂φold(si,�,h
V
i,�−1) is the advantage function

estimate, S(px) = Ex∼px
{− log(px(x))} is the entropy function

which encourages the exploration by inducing stochastic poli-
cies, and α is the temperature hyper-parameter which balances
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Algorithm 1: Implicit Cooperative Positioning Multi-Agent
Proximal Policy Optimization (ICP-MAPPO).

1: Input: actor, critic and belief parameters θ = θold,
φ = φold, and ψ.

2: for each training step n = 1, 2, . . . , Nstep do
3: Initialize empty batch B = {} and trajectory τ = [ ]
4: Initialize histories hV

i,0 and hb
i,1 for critic and beliefs

5: Initialize state estimate ŝ0
6: for t = 1, 2, . . . , H do
7: for all agents i ∈ V in parallel do
8: Sample action ai,t ∼ πθold(ai,t|hb

i,t)

9: Send hb
i,t and receive hb

j,t ∀j ∈ Ni,t

10: Get value estimate V̂φold

(
si,t,h

V
i,t−1

)
with (20)

11: Compute āi,t and h̄b
i,t with (13) and (14)

12: Observe si,t+1,oi,t+1

13: Get state estimate ŝi,t+1 with (11)
14: end for
15: Observe rt and store τ t in τ
16: end for
17: Compute advantage estimate Âi,t ∀ t and agent i on τ
18: Compute reward-to-go Rt for each ∀ t on τ
19: Split trajectory τ into chunks of length Lτ

20: for each � = 0, 1, . . . , �H/Lτ � do
21: B = B ∪ {τ t, Ât, Rt}�+Lτ

t=�

22: Adam update of ψ on L(ψ) with data {τ t}�+Lτ

t=�

23: end for
24: for each mini-batch do
25: Sample {τ �}Lτ

�=1 ∼ B
26: Adam update of θ on L(θ) with data {τ �}Lτ

�=1

27: Adam update of φ on L(φ) with data {τ �}Lτ

�=1

28: end for
29: θold ← θ, φold ← φ
30: end for

the trade-off between exploiting the best actions and exploring
new actions. Finally, the beliefs bψ adopt a MSE loss function
to minimize J(b) in (10) as

L(ψ) =
1

NLτ

∑
i∈V

Lτ∑
�=1

∥∥ŝi,t − si,t∥∥22. (24)

All the NNs are trained with maximum likelihood estimation
(MLE) criterion. However, while bψ(si,t|oi,t, āi,t−1, h̄b

i,t−1) di-
rectly outputs ŝi,t, πθ(ai,t|hb

i,t) predicts the probability of com-
munication among agents through sigmoid activation functions,
from which actions ai,t are sampled. The full training algorithm
can be found in Algorithm 1, where we defined a transition
as τ t = (st,ot,h

b
t , h̄

b
t ,h

V
t ,at, āt, rt, st+1,ot+1, ŝt+1). Since

our approach combines the usage of passive targets to improve
the position estimate and MAPPO MARL to perform an efficient
agent selection, we call this algorithm ICP-MAPPO.

The main characteristics of ICP-MAPPO are the following.
ICP-MAPPO is a low-bias on-policy algorithm since the data
used to train the agents are collected from the policy currently
being learned or improved. For value regression, we adopted

a centralized value function that takes as input extra global
information (i.e., the states) not present in the agent’s local
observation to accurately estimate the values state. The beliefs
are computed as in model-based value estimation (MBVE)
RL [103], [104], leveraging the learned dynamics to predict
the state estimate. This additionally reduces the variance of the
PO method without introducing additional biases by avoiding
performing rollouts [105]. Finally, as opposed to conventional
MARL algorithms, the rewards are not directly dependent on
the action, but only implicitly through the beliefs of the next
timestep. This permits to effectively decouple the evaluation of
actions based on the improvement of state predictions rather than
immediate outcomes, focusing on long-term strategic benefits
rather than short-term gains.

V. SIMULATION EXPERIMENTS

In this section, we first introduce the scenario and the training
procedures, and then we describe the baseline methods, and the
main simulation results.

A. Simulation Setup

To evaluate the performances of the proposed ICP-MAPPO
algorithm, we simulate a C-ITS scenario with the CARLA
software [94] in an urban map (i.e., Town02 of CARLA) that
spans an area of 200×200 m2. Fig. 1 shows a bird-eye-view
representation of the map. CARLA takes into account inter-
vehicle dynamics, such as acceleration, braking behavior, and
collision physics, as well as communication constraints given
by the environment. Within the area, 20 CAVs move for 1500
timesteps sampled every 0.2 s, while 72 fixed objects (poles) are
detected by the vehicles if in line-of-sight (LoS) and within a
sensing range of 70 m. The same coverage area applies to A2A
measurements. For the communications, we only consider the
direct LoS path, as if the vehicles were equipped with LIDAR
technology that could be blocked by obstacles such as buildings
or other vehicles. The absolute driving speed adopted in the
testing scenario ranges from 0 to about 60 km/h, with a mean and
standard deviation speed of 0.2 km/h and 14 km/h, respectively.
We point out that the motion models of the vehicles are not linear
and that the factor graph to solve the distributed ICP method
contains cycles. For the GNSS, A2A, and A2T observations,
measurement errors are simulated as additive independent Gaus-
sian noises with standard deviations of 2 m each.

For the training and testing of the ICP-MAPPO algorithm,
we create two different simulations each composed of H =
1500 timesteps. Model training is performed over Nstep = 2000
episodes (or training steps), each characterized by a different re-
alization of the measurements. For testing, 40 Monte Carlo (MC)
evaluations are considered, unless otherwise specified. During
training, we adopt a trajectory lengthLτ = H/2 to use at most 2
mini-batches, as suggested by [87], [106]. The entropy, reward
and clipping coefficients have been chosen to be α = 0.01,
β = 0.05 and ε = 0.2, respectively. Note that β = 0.05 would
correspond to an improvement step of the reward function of
5 cm in a non-standardized state scenario. The discount factor is
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Fig. 5. Belief LSTM loss varying the number of training episodes.

γ = 0.99, while the Adam [107] learning rate is μ = 10−5 with
standard hyper-parameters.

Regarding the NN architectures, we adopt a critic network
with three layers: a fully-connected (FC) linear layer with 256
neurons, a gated recurrent unit (GRU) with hidden size of 256
and a final FC linear layer. The actor is an MLP with two hidden
linear layers of [128, 64] neurons and rectified linear unit (ReLU)
activation functions, and an output layer with sigmoid activation
function. Lastly, the belief network employs two bidirectional
LSTM layers of 256 hidden neurons each and ReLU activation
functions, followed by a Maxout unit with 128 output features
and two linear layers of [64, 32] neurons.

B. Computational Complexity and Latency

To access the real-time processing capabilities of the proposed
method in fulfilling the CAVs requirements on latency, we here
investigate the computational complexities and communication
delays of the proposed ICP-MAPPO solution with respect to
the ICP algorithm. We specify that the number of floating point
operations (FLOPs) for Vφ, πθ and bψ are 0.82 · 106, 0.54 · 106,
and 11.3 · 106, respectively. For comparison, the computational
complexity of particle-based ICP methods is estimated with
O(Nmp ·N ·K ·Np), where Nmp and Np are the number of
message passing iterations and particles, respectively. The ex-
periments are performed on a workstation machine with Intel(R)
Xeon(R) Silver 4210R CPU @ 2.40 GHz, 96 GB RAM, and a
Quadro RTX 6000 24 GB GPU, capable of achieving about
16.3 · 1012 floating point operations per second (FLOPS) with
just CPU performances. This implies a maximum latency for
sample-inference of around 1μs, which is expected to be truthful
and accurate since the computational capabilities of CAVs are
planned to far exceed our workstation capabilities with more
than 4 · 1015 FLOPS for L5 SAE level [108].

When considering the communication delays with a hidden
LSTM size of 256 bytes for ICP-MAPPO and aboutNmp = 1000
particles (each with 2 bytes for 2D position and 1 B for the
weight) in the ICP method, the data transmission would require
approximately 1 and 10 packets, respectively. This estimate is
based on 5G vehicle-to-vehicle (V2V) communications with a
typical packet size of 300 bytes. Two communication scenarios
are possible: direct V2V [109] or vehicle-to-network-to-vehicle

Fig. 6. Achieved reward varying the number of training episodes.

(V2N2V) [110] when under cellular coverage. For direct V2V
communication, the end-to-end (E2E) packet latency is around 1
ms [109], resulting in 10 ms for ICP and 1ms for ICP-MAPPO. In
the V2N2V case, assuming the distances and scenarios described
in [110], the E2E packet latency is around 4ms, resulting in 40 ms
for ICP and 4ms for ICP-MAPPO. We note that the ICP E2E
communication delay exceeds the 5 ms latency requirements
of fully CAVs [111] in both scenarios, especially if a message
passing procedure with multiple belief exchanges is considered.
On the contrary, the ICP-MAPPO method meets the stringent
latency requirements needed for fully CAVs.

C. Baseline Methods

As benchmark algorithms, we consider the following imple-
mentations:

1) KF-GNSS: Non-cooperative single-agent GNSS-based
KF only using GNSS observations and perfect knowledge of
the measurement standard deviation σ(GNSS) = 2 m. For the
motion dynamics (1), we adopt a constant velocity model with
standard deviation of the Gaussian-distributed velocity driving
process calibrated on the data and equal to 0.5 m/s2.

2) ICP: Centralized ICP method from [32] with known A2A
and A2T standard deviations, i.e., σ(A2A) = σ(A2T) = 2 m, and
same motion model as for the KF-GNSS. Note that the use of the
exact measurement statistics in generation and tracking allows
to obtain the optimal performance (i.e. with no errors due to
mis-modeling). Here the network of agents is fully-connected,
i.e., all the agents share the same measurements.

3) Ego ICP-MAPPO: Proposed ICP-MAPPO method, with
no-cooperation, i.e., only comprising the belief LSTM and im-
posing no connectivity with other agents, i.e., āi,j,t = −1 ∀t ∈
{0, . . . , H − 1}, i ∈ V, j ∈ Ni,t. In this way, each agent has to
rely just on its measurements without performing aggregation
of the neighbors’ hidden features.

D. Results

1) Training Performances: In the first assessment, we aim at
verifying the convergence of the proposed ICP-MAPPO algo-
rithm during the training episodes. In Figs. 5, 6 and 7, we report
the mean belief LSTM loss, reward, and state value function,
respectively, along with the 5–95 percentile as error bounds.
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Fig. 7. Mean value function varying the number of training episodes.

The metrics are computed among agents and trajectory over
the whole episode. From the figures, we notice two distinct
phases of the training: before and after reward convergence.
In the first phase, i.e., before episode 250, the exploration is
encouraged, leading to a much higher variability of the reward
and a very rapid decrease of the LSTM loss function. After
passing into the second phase, the positioning improvement
becomes smaller, with a consequent convergence of the reward
to the value of 2. Notably, also the mean value function converges
after about 250 episodes, but with a high variance between
agents and trajectories. This may be indicative of a rich and
complex environment where the optimal policy may not be
static, but rather dynamic and contingent on the interactions
between agents and the environment. Indeed, the complexity of
the state, e.g., each agent has a different trajectory in the space,
can lead to a wide range of value function estimates as different
states are visited with varying frequencies.

2) Cooperative Positioning Testing: This experiment has the
objective of comparing the positioning capabilities of ICP-
MAPPO with respect to the baselines in an unseen testing
trajectory. To this aim, Fig. 8 shows the root mean square error
(RMSE) on the vehicle position estimate at each timestep of the
trajectory (Fig. 8(a)) and the corresponding cumulative density
function (CDF) of the absolute error (Fig. 8(b)). The RMSE
is computed among the agents at the single timestep, while the
mean and error bounds are computed within the MC evaluations.
From the results, we observe that the Ego ICP-MAPPO method,
which only relies on GNSS measurements, converges to the
KF-GNSS method, indicating a correct usage of the observations
to estimate the position. Moving to the cooperative methods,
we notice a higher speed of convergence of ICP-MAPPO with
respect to the conventional ICP. This is mainly due to the
learned vehicles’ dynamics and to the effective combination of
neighbors’ observations. As a consequence, the ICP-MAPPO
algorithm outperforms the ICP method in terms of absolute error
by 21%, passing from a median of 42 cm to 33 cm.

3) Generalization Capabilities: This experiment aims at as-
sessing the generalization capabilities of the proposed method in
unseen scenarios. To evaluate the environmental dependence of
our model, we tested the pre-trained ICP-MAPPO on a different
CARLA map, specifically Town10. In Fig. 9, we plotted the
position RMSE on testing trajectories in both Town02 (used for

Fig. 8. Testing performances on the cooperative scenario. (a) RMSE of the
position over time for the single-agent KF-GNSS, ICP, proposed single agent
and cooperative ICP-MAPPO. (b) CDF of the absolute error.

Fig. 9. RMSE on the position estimate achieved by ICP-MAPPO varying the
number of targets (i.e., poles) in two distinct environments.

training) and Town10 (unseen environment), varying the number
of passive objects in the respective map. We shall notice that
the numbers of poles in Town10 and Town02 are 146 and 72,
respectively. Since ICP-MAPPO was trained with a maximum
input size of 72 measurements, we adjusted the number of targets
up to 72 for this experiment.

The results in Fig. 9 confirm that, even in the unseen scenario,
a higher number of vehicles increases the positioning accuracy
thanks to the cooperation among vehicles. Comparing the results
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Fig. 10. Communication efficiency comparison between the ICP and the pro-
posed ICP-MAPPO methods. (a) RMSE on the position varying the maximum
number of cooperative agents in the network. (b) Mean number of neighbor
agents selected by the policy varying the maximum connectivity of the graph.

on Town02 and Town10, we note that in the limit-case of no
measurements shared among agents, the performances in the
two scenarios coincide. On the contrary, when the number of
features increases, the performances on the unseen scenario are
slightly lower (i.e., about 10cm) despite the completely new
environment.

4) Communication Efficiency: In this last assessment, we test
the effectiveness of the policy choices in terms of cooperation
power and communication efficiency. In Fig. 10 we report
the position RMSE at convergence (Fig. 10(a)) and the mean
number of selected agents from the policy (Fig. 10(b)) varying
the maximum degree of connectivity allowed in the network.
In Fig. 10(a) we observe an intuitive inverse relation between
the maximum cooperative agents and the RMSE, with a rapid
decrease under 1 m of RMSE with just 2 agents. Notably, after
8 cooperative agents, the improvement in RMSE is negligible,
with convergence to about 40 cm. To study this behaviour, in

Fig. 11. Mean number of A2A connections in the network graph, for the ICP
and the proposed ICP-MAPPO algorithms, and different maximum number of
cooperative agents.

Fig. 10(b) we notice that the policy tends to select no more than 9
agents for cooperation. This likely occurs because the marginal
benefits of additional cooperation diminish beyond this point,
leading agents to prefer collaboration with only their closest
neighbors. Indeed, incorporating data from distant agents that do
not observe common targets results in only slight enhancements
in positional accuracy. Lastly, we highlight that the ICP-MAPPO
has higher performance than the ICP method for the same
number of cooperative agents in the network.

To evaluate the trade-off between positioning accuracy and
communication overhead, in Fig. 11, we plot the mean number of
A2A links, considering varying numbers of cooperative vehicles
in {2, 6, 10, 15, 20}. We observe that with a smaller number of co-
operative agents, such as 2, the ICP-MAPPO tends to employ all
available agents, leveraging neighbors’ measurements to rapidly
reduce GNSS uncertainty. Conversely, with a higher number of
agents, particularly beyond 10, the benefits of additional coop-
eration decrease (as shown in Fig. 10(a)). This is because only
the closest neighbors with a significant number of shared targets
substantially enhance positioning accuracy. Notably, with 10 and
20 agents, ICP-MAPPO reduces the number of links by 30% and
60%, respectively, compared to ICP.

VI. CONCLUSION

In this paper, we addressed the problem of CP in a distributed
network of agents that exploit passively detected targets as
common reference points to improve the positioning accuracy
according to the ICP framework. We provided a generalization
of the Bayesian ICP solution by exploiting the MARL approach,
which enables the dynamic optimization of the A2A links used
for cooperation accounting for partial observability of the state.
We presented a novel ICP-MAPPO algorithm where the agents
actively select the neighbors to communicate with by following
their optimized policy. This allows to minimize the communica-
tion overhead for cooperation, while improving the positioning
accuracy of ego-agent systems. The proposed solution is proven
to outperform single and multi-agent conventional approaches
thanks to DL-based states’ belief and policy models.

Realistic simulations of a C-ITS scenario created with
CARLA simulator demonstrate the superior performances of
ICP-MAPPO with state-of-the-art ICP methods, both in terms
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of positioning accuracy and efficiency of communications. The
cooperation is indeed intelligently exploited to enhance the per-
formances and, at the same time, the communication efficiency,
by selecting ad-hoc neighbors that are relevant for the task.
The benefits of the approach look promising for applications
where groups of agents have a common inference objective and
predictions/decisions need to be taken based on incomplete or
uncertain data.

As future work, we envision the extension of the proposed
method to decentralized frameworks [112], incorporating also
data association of the targets to the measurements. Addition-
ally, performances could be enhanced by exploiting a higher
dimension of latent features within object detectors, instead of
filtering specific objects such as poles. This approach would
allow vehicles to exchange much more meaningful information
in a compressed manner. Furthermore, including motion plan-
ning [113] could enable the system to not only estimate but
also modify the vehicles’ states according to their destinations.
Finally, introducing safe RL [114] by adding safety constraints
related to communication resources, such as maximum available
bandwidth, would ensure that the policies learned by the agents
remain efficient under real-world communication constraints.

APPENDIX A
PROOF OF (18)

To prove (18), we start by writing the gradient of the RL
objective function in (17) as

∇θ J(πθ) = ∇θ Eτ∼p(τ |πθ){R̃(τ )} = ∇θ
∑
τ

p(τ |πθ) R̃(τ )

=
∑
τ

∇θ p(τ |πθ) R̃(τ ). (A1)

Now, we can rewrite the gradient of the trajectory PDF
∇θ p(τ |πθ) using the log-derivative trick as

∇θ p(τ |πθ) = p(τ |πθ)∇θ log
(
p(τ |πθ)

)
. (A2)

Given that the gradient of the log-trajectory PDF
∇θ log(p(τ |πθ)) is

∇θ log (p(τ |πθ)) =∇θ log
(
T0

H−1∏
t=0

T (st+1|st,at)πθ(at|st)
)

=

H−1∑
t=0

∇θ log
(
πθ(at|st)

)
(A3)

we can rewrite (A1) as

∇θ J(πθ) =
∑
τ

p(τ |πθ)∇θ log
(
p(τ |πθ)

)
R̃(τ )

= Eτ∼p(τ |πθ)

{
∇θ log

(
p(τ |πθ)

)
R̃(τ )

}
= E(st,at)∼p(st,at|πθ)

{H−1∑
t=0

∇θ log
(
πθ(at|st)

)

×
H−1∑
t=0

γt R
(
st, at

)}
.

(A4)

Since the action at at time t only influences the future rewards
and not the past ones, (A4) can be equivalently rewritten as

∇θ J(πθ) = E(st,at)∼p(st,at|πθ)

{H−1∑
t=0

∇θ log
(
πθ(at|st)

)
Rt

}
(A5)

where we used the reward-to-go at time t
Rt =

∑H−1
t′=t γt′−t R(st′ , at′), as opposed to R0.

Since it can be proven that for any function of the
state B(st) called baseline, we have that Eat∼πθ(at|st)
{∇θ log(πθ(at|st)B(st))} = 0, then we can reduce the vari-
ance of the PO algorithm, while remaining unbiased, by sub-
tracting the baseline from the reward-to-go as

∇θ J(πθ) = E(st,at)∼p(st,at|πθ)

{H−1∑
t=0

[
∇θ log

(
πθ(at|st)

)
×(Rt −B(st)

)]}
.

(A6)

Finally,Rt andB(st) are usually substituted with their estimates
Qπ(st, at) and V π(st), respectively, leading to the definition
of the advantage function At = Qπ(st, at)− V π(st). Recently,
more advanced versions of the advantage function, as the gen-
eralized advantage estimator (GAE) function AGAE

t have been
proposed in the literature [100] to regulate the bias-variance
trade-off, increase stability, efficiency, and obtain faster conver-
gence. We want to point out that usage of the baseline and/or
the estimate of Rt are not necessary, and thus any function
Ft ∈ {Rt, Q

π(st, at),Rt − V π(st), At, A
GAE
t } is a valid choice.
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