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Abstract—TFiltering refers to the methods for inferring time-
varying parameters and is a crucial task in cyber-physical
systems. An important category of filtering is distributed filtering,
where sensor nodes transmit observations via communication
links to inference nodes that estimate the unknown states.
Distributed filtering is challenging in the sense that the com-
munication constraint of the sensor nodes limits the amount of
information available to the inference node, calling for the co-
design of communication and computing. This paper establishes
a theoretical framework for the co-design of communication and
computing in distributed filtering, building on an information-
theoretic view of the Kalman-Bucy filtering. In particular, this
paper considers a networked system consisting of two nodes,
where each node aims to infer its own time-varying state in
continuous-time scenarios. The two nodes are connected by a
Gaussian feedback channel. Via the feedback link, one of the
nodes can obtain the sensor observations and received signals of
the other node. This paper develops an optimal linear strategy,
namely the information difference encoding strategy, for gen-
erating signals transmitted via the Gaussian feedback channel.
This paper also presents an inequality that relates Shannon
information with Fisher information in distributed filtering.
The inference accuracy and power efficiency of the information
difference encoding strategy are quantified via simulations.

Index Terms—Distributed inference, Kalman-Bucy filter,
mutual information, Fisher information, Shannon information.

I. INTRODUCTION

NFERENCE of environmental states is a critical task for
cyber-physical systems (CPSs) [1], [2], [3], [4], [5], [6],
[7], [8]. For example, estimating and tracking the positions
of machines and workers is important for industrial CPSs
[9], [10], [11]. Distributed filtering is an important type of
inference where an inference node estimates a time-varying
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unknown state based on communication data that the node
receives from a remote sensor node.

Accurate distributed filtering is challenging as the amount of
data that the sensor node can transmit to the inference node is
limited due to communication constraints. The maximization
of inference accuracy requires the co-design of communication
strategy for generating the transmitted data and the computing
algorithm for estimating the unknown state.

Filtering and inference have been investigated in the lit-
erature from different perspectives. From the perspective of
theoretical foundation, the calculation of mutual information
in filtering problems is investigated in [12] and [13]. Rela-
tionships between mutual information, Fisher information,
and minimum mean-square error (MSE) for filtering and
estimation problems are derived in [14], [15], and [16]. Con-
nections between filtering in dynamical systems with statistical
mechanical systems are established in [15], [16], and [17]. The
problem of distributed filtering over lossy channels is studied
in [18] and [19]. For this type of problem, it is shown that the
notion of anytime capacity [20] plays an important role [21],
[22], [23]. In addition, the accuracy of spatiotemporal signal
reconstruction is derived in [24]. From the perspective of algo-
rithm design, consensus methods for distributed filtering are
presented in [25], [26], and [27], whereas diffusion methods
are presented in [28], [29], and [30]. Distributed estimation
and filtering algorithms are also developed for industrial CPS
applications such as target localization and tracking [31], [32],
[33].

The design of encoding strategies for distributed filtering
has been investigated for channels with feedback in [34],
[35], and [36], and without feedback in [37], [38], and [39].
Such design is closely related to the problem of control under
communication constraints [40]. One line of research considers
conditions of the channel under which a networked control
system is stabilizable [41], [42], [43]. An important result is
that the system is stabilizable if the data rate of the channel
exceeds the intrinsic entropy rate of the system [43], [44], [45].
Another line of research considers minimization of mutual
information and of directed mutual information under con-
straints of linear-quadratic-Gaussian control costs [46], [47],
[48]. While most existing works address discrete-time sce-
narios, only a few papers study control under communication
constraints in continuous-time scenarios [49], [50]. Existing
works typically assume that the receiver node does not observe
the state of the system and relies on the received signal for
inferring the state. Moreover, previous study on the connection
between mutual information and Fisher information is rather

0733-8716 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and
similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: MIT. Downloaded on October 25,2025 at 09:34:05 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-6581-2849
https://orcid.org/0000-0001-9224-2178
https://orcid.org/0000-0002-8573-0488

LIU et al.: CONTINUOUS-TIME DISTRIBUTED FILTERING VIA A GAUSSIAN FEEDBACK CHANNEL

3411

TABLE I
NOTATION AND DEFINITIONS OF QUANTITIES

Notation  Definition Notation  Definition
x,(f) state of node 4 at time ¢ agl) scalar that determines the evolution of x,(f)
vfﬁ random vector corresponding to noise in node ¢’s state process zgl) observation obtained by the sensor of node ¢ at time ¢
"yt(l) sensor gain vector for observations obtained by node 1 I“t(Q) sensor gain matrix for observations obtained by node 2
] random vector correspondin noise in th servations ob- . . .
n§7) al do ecto C,O esponding to noise the observations ob St signal transmitted from node 2 to node 1 at time ¢
tained by node ¢
re signal received by node 1 from node 2 at time ¢ s encoding function employed for generating s¢
encoding strategy of horizon 7" consisting of encoding functions | 2 . . .
Ho:T g gy & g P constraint on the transmit power at time ¢
we for t € [0,7)
w random variable corresponding to noise in the communication R scalar determining the power of noise in the communication
t channel ¢ channel
5(51) distributed filter of x§1> computed by node 1 at time ¢ et (Mo:t) mean-square error of 5(%1) if encoding strategy 0.+ is employed

limited for distributed filtering. Fundamental questions on
distributed filtering include (i) how to conduct co-design of
the encoding strategy and the filtering algorithm to maximize
the filtering accuracy; and (ii) what is the relationship between
information-related quantities such as Shannon and Fisher
information? Answers to these questions will deepen the
understanding of distributed filtering and provide methods for
achieving desirable inference performance under communica-
tion constraints.

This paper investigates continuous-time distributed filtering
for a two-node system, where each node attempts to infer
an evolving unknown state in real-time. In this system, both
nodes obtain noisy sensor observations of the unknown states
via sensing and communicate via a Gaussian channel with
feedback. Using the feedback link, one node can obtain the
sensor observations as well as the received signals of the other
node. The goals of this paper include performing co-design
of the encoding strategy and distributed filtering algorithm as
well as establishing connections between information-related
quantities in distributed filtering. The key contributions of this
paper include the following, we

e propose the information difference encoding (IDE) strat-
egy and prove that it is an optimal linear strategy;

e ecstablish a relationship between Shannon information and
Fisher information for distributed filtering; and

e compare the performance of IDE with the performance
of existing encoding strategies.

The remaining sections are organized as follows. Section II
presents the system model. Section III introduces the co-
design of IDE and distributed filtering. Section IV presents
extensions for average power constraints and for multivariate
unknown state scenarios. Section V presents an information-
theoretical interpretation of the distributed filtering problem.
Section VI shows case studies. Section VII concludes the
paper.

Notation: Random variables are displayed in sans serif,
upright fonts; their realizations in serif, italic fonts. Vectors
and matrices are denoted by bold lowercase and uppercase
letters, respectively. The m-by-n matrix of zeros is denoted
by 0,,xn; When n = 1, the m-dimensional vector of zeros

is simply denoted by 0,,. The subscript is removed if the
dimension of the matrix is clear from the context. The entry
on the ith row and jth column of a matrix A is denoted
by [A]; ;. The transpose, trace, determinant, and the column
space of A are denoted by AT, tr{A}, det(A), and C(A),
respectively. Expression diag{A;, A} represents the block
diagonal matrix [‘%1 ,22]- The gradient of function g(x) is
denoted by a column vector 8%—(;:). The o-algebra generated
by a random quantity x is denoted by o(x). The expectation
of a random vector x is denoted by E{x}. The conditional
expectation of x given the sub-o-algebra generated by random
quantity y is denoted by y. The covariance matrix of x and
the conditional covariance matrix of x given y are denoted by
V{x} and V{x |y}, respectively. Independence between x and
y is denoted by x 1l y. Conditional independence between X
and y given a random quantity Z is denoted by x 1l y|z. Given
a stochastic process {x; }+>0, the set {x; } -¢[s ¢ is denoted by
xs.¢ for any 0 < s < . Notation and definitions of quantities
used in the paper are summarized in Table L.

II. SYSTEM MODEL

Consider a networked system involving two nodes, node 1
and node 2, where each node aims to infer a distinct state (e.g.,
position or temperature) that varies with time (see Fig. 1). At
each time, node 1 obtains a noisy sensor observation of its
own unknown state, whereas node 2 obtains a noisy sensor
observation of the unknown states of both nodes. Moreover,
node 2 transmits a signal to node 1 with the aim of facilitating
the inference of node 1 via a noisy channel at each time.
Node 1 infers its state of current time based on all the obser-
vations and received signals it has obtained up to that time. In
addition, node 1 can send data back to node 2 via noiseless
feedback. With such feedback, the sensor observations and
signals obtained by node 1 are available to node 2. These data
can be employed by node 2 for generating signals at future
times as indicated by the dashed arrows entering the encoder
in Fig. la. This paper considers noisy communication from
node 2 to node 1 and noiseless feedback from node 1 to
node 2. This corresponds to scenarios where node 1 has a
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Fig. 1. System model and application in industrial CPS of distributed filtering: (a) System model. Node 7 = 1, 2 is associated with a state x( %) and obtains a

noisy sensor observation z,(5 R

at time ¢. Node 2 transmits encoded signal S; to node 1, and node 1 determines a distributed filter X X;

(1)

based on its observations

and the received signals. Using the feedback link, node 2 can obtain the sensor observations as well as the received signals of node 1. These data are combined
with node 2’s observations for generating the transmitted signal. (b) Application in industrial CPS. Sensor 1 is connected to the fog where a filter infers the
unknown state of node 1 based on sensor 1’s observations and received communication data. Node 2 is a mobile robot that transmits data to node 1 at a low
data rate (e.g., using narrowband IoT communication) and receives feedback data from node 1 at a high data rate (e.g., via visible light communication).

more reliable communication link than node 2 or the noise at
the receiver of node 2 is less strong than that at node 1.

An application in industrial CPS that suits this model is
shown in Fig. 1b. In particular, node 1 contains a sensor and
wireless transceivers connected to the fog. A filter at the fog
infers the unknown state of node 1 at each time based on
observations obtained by sensor 1 and signals received from
node 2 via the channel. Node 2 is a mobile robot equipped
with a sensor and wireless transceivers. The robot transmits
data via the channel to node 1 at each time based on its
sensor observations and the data received via the feedback
link. The transmission capability of node 1 is significantly
stronger than node 2. This is the case, for example, when
node 1 employs visible light communication whereas node 2
employs narrowband IoT communication. ‘

Details of the system model are presented below. Let XE’)
represent the state of node ¢ at time ¢t € [0,00) for i = 1,2.
The state process {Xt } >0 is a Gaussian process described
by the following stochastic differential equation (SDE) [51],
[52], [53]

dxti) — aE )xgl)dt + (bgi))Tdvgi) vt € [0,00) (1

where aEi) is a scalar and bgi)
particular, b,E” determines the level of noise in node 7’s state

process. The process {vgi) is a Brownian motion. The
(4)

is a non-zero column vector. In

}t>0

state X~ at time O is unknown and modeled as a zero-mean
: (1) (2)

Gaussian random variable. Processes {v; '}, and {v;” },_,

are independent, whereas X(l) and x( ) are also independent.
Consequently, {XEI) } >0 and {Xf) } 150 T€ independent. Such
independence is realistic, especially in scenarios where the two
nodes’ states do not interfere with each other. An example
scenario is that a state corresponds to the position of a node,
and the motions of the two nodes are independent.
Observations obtained by node i’s sensor are represented

by a stochastic process {zgi)} +>o that satisfies

dzgl)

9% at + = dn(M (2a)

T
a2 =P [V x| dt+ 5P an® @b

for all ¢ € [0,00), where f"yt(l) and Ft@) are referred to as

a sensor gain vector and a sensor gain matrix, respectively.
(@) . . ; .

Process {nt } +>0 i (2) is a Brownian motion and represents

noise in node ¢’s sensor observations. The level of such noise

is affected by the deterministic matrix Et(l) It is considered

that = '_'(7) (':'t(i)) is invertible for all ¢ >
2
Z

0. The observation
of node ¢ at time O is given by

1 1, (1
zé)_gé)xg)+§(1)

2 29[ 2 2
() G()[x(()) x((])] +g®@

(3a)
(3b)

where g ) and G ) are a deterministic quantities. Vector C(i)
is a zero-mean Gaussian random vector that represents noise
in the observation at time O of node ¢ = 1, 2.

At time ¢, node 2 transmits a signal S; € R to node 1
via a Gaussian channel, and the received signal at time t
is denoted by r;. The transmitted signal S; is generated by
node 2 based on observations z((ft) obtained by its own sensor
( ) and signals ry.; obtained via
feedback. Consequently, S; is o(21), 2], ro.;) -measurable
[53]. Therefore, S; can be written as

as well as observations z;

S0 = (28,250 Tout) )

for a real function pu; referred to as the encoding function
at time ¢. Note that “encoding” refers to the generation of
signals as channel input based on information sources. The
range of an encoding function is determined by the type of
the channel. Since this paper considers a Gaussian channel,
the range of an encoding function consists of all the real
numbers. This is different from communication over a discrete
memoryless channel (DMC), where an encoding function
maps the information source to an element in a finite set via
quantization and channel coding procedures. Consequently, the
range of an encoding function is a finite set in DMC.
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A collection of encoding functions .7 := {1t }1e[o,7] from
time O to T' > 0 is referred to as an encoding strategy of
horizon T' if the following constraint on transmit power is
satisfied

E{s?} <P, Vte[0,T] (5)

where f’t > 0 represents a predefined power constraint at
time ¢. Note that P, can vary with ¢, indicating that node 2’s
transmitter is allowed to adjust its power budget based on its
available resources and system requirement at different times.
This improves the flexibility and efficiency of the system and
is especially suited for Internet of Things and beyond 5G
network applications.

The signals received by node 1 are represented by a stochas-
tic process {r;}+>0 given by

drt = S dt + K¢ th (6)

with rg = 0, where {W;};>¢ is a one-dimensional Brownian
motion corresponding to additive Gaussian noise in the chan-
nel. The deterministic scalar x; affects the power of noise in
the communication channel.

The following scenarlo is considered in the paper. The
deterministic quantities at , b§ , 1) F( ), ut(l), 901) fo)
in (1)—(3) are known to both nodes. That is to say, the
parameters determining the evolution of the state processes,
sensor gain vectors and matrices, as well as levels of noise are
known to both nodes. Random quantities X( (2) AN 4
{"tl)}t>o’ { 2)}t>0’ { 1)}t>0’ {"tQ)}t>o’ and {Wi}izo are
independent. For any finite horizon 7" > 0, the quantities P,
K¢, and ai ), as well as each element of bg , %(1) Ft( ), and
.:'t(q) with ¢ = 1, 2, considered as functions of ¢, are bounded
and have only finitely many points of discontinuity in the
interval [0, T7.

At each time t >
at time ¢ based on its local observations z;

0, node 1 infers its unknown state X,El)

(1 ) and signals
ro.: received from node 2. Therefore, the estlmator of X,El)
computed by node 1 is a(z&t) ,To:¢)-measurable. For an arbi-
trary encoding strategy fuo.¢, the minimum-mean-square-error
(MMSE) estimator §<§” of xgl) at node 1 is the conditional

expectation given by
0. E{xtl) ESRs t} )

This estimator is referred to as the distributed filter and is the
focus of this paper. The MSE of the distributed filter at time
t is determined by the encoding strategy employed by node 2
and is denoted by e, (,UO:t) if strategy po.: is employed, i.e.,

et (Ho:t) = E{(Xgl) kgl)) }

On the other hand, inference of ng) at node 2 is less interesting
in this paper and is thus not discussed. This is because node 2
can infer X,EZ) optimally using the well-known Kalman-Bucy
filter [53] as observations of both nodes are available to
node 2 in the presence of feedback.

Remark 1: Equations (4)—(7) indicate that the encoder at
node 2 only uses observations and feedback data obtained
up to time ¢ for generating the signal to be used by
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node 1 for inferring X,ﬁl). In other words, the encoder does

not wait to collect observations and feedback data after time ¢
for inferring the state Xgl) at time t. This minimizes encoding
and inference delay and is thus especially suitable for real-
time communication, a critical requirement for modern CPSs
[54], [55]. O

Remark 2: The distributed filtering problem in this paper is
a generalization of the Gaussian process transmission problem
in [56]. There, the aim is to design an encoding strategy
for transmitting a known Gaussian process accurately via a
Gaussian channel. For the special case where 'yt( ) = =0,
r' =1 0]and 2% =0 forall 0 < t < T, the distributed
filtering problem considered in this paper reduces to the
Gaussian process transmission problem in the literature. In
particular, node 2 and node 1 play the roles of the transmitter
and the receiver, respectively, and {Xgl)} >0 1s the process
to be sent from the transmitter to the receiver. Note that
{Xgl)} 1> is known to node 2 in this special case as (2)

simplifies to dz( ) = Xil) dt for i = 2. O

III. COo-DESIGN OF ENCODING AND FILTERING

This section introduces definitions for encoding strategies
and presents the co-design of IDE and distributed filtering.

A. Definitions for Encoding Strategies

The definition of a linear encoding strategy is presented in
the following.

Definition 1 (Linear encoding strategy) An encoding strat-
egy po.r is called a linear encoding strategy if u; is a linear
function for all ¢ € [0, 7. O

If a linear encoding strategy of horizon 7' is employed,
then X(()l)T, X(()Q)T, z(()l)T, z(()z)T, and ro.p are jointly Gaussian.
Consequently, the distributed filter )A(gp1 ) and its MSE are
more tractable compared to those in cases where a nonlinear
encoding strategy is employed.

We next define the notions of optimal linear encoding
strategy (OLES) and optimal encoding strategy (OES). To

this end, define Py as a short notation for {Pt}o <t<T"

Moreover, let C(POzT) and M(P():T) represent the set of
linear encoding strategies and the set of encoding strategies of
horizon T, respectively, that satisfy the power constraints Fy.7.
Definitions of OLES and OES are presented in the following.
Definition 2 (OLES and OES) An OLES for x{) is an
encoding strategy that minimizes the MSE of the distributed
filter )?(Tl ) among all the strategies in £(Py.7). In other words,
an OLES for X(T1 ) is a solution to the optimization problem

minimize ez (pio.7) -
MO:TGE(PO;T

Similarly, an OES for X(T1 ) is a solution to the following

optimization problem

minimize e (po.7) - O
No:TEM(PO:T)

Finally, two encoding strategies po.7 and fig.7v of horizon
T and T, respectively, are called consistent if u; = fi; for all
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0 <t < min{7T,T'}. The co-design of encoding and filtering
is inherent in the definitions of OLES and OES as the error of
the MMSE distributed filter is used as the metric for evaluating
the encoding strategy.

B. IDE for Distributed Filtering

We now design IDE, an encoding strategy for minimizing
the MSE in distributed filtering. To this end, define y§1> as the
MMSE estimator of xﬁ” based on observations obtained by
node 1 and node 2 from time O to time ¢, i.e.,

1 1 1 2
i = B | 22,22}

The IDE strategy designed in this paper is described below.
Definition 3 (IDE) Consider an encoding function s} at
time ¢ given by

a2 r00) = (3 B 2e}) o

for t €[0,T].  (8)

where a; > 0 is a scalar chosen to ensure that E{s2} = P,.
Then i} 1 is called an IDE strategy of horizon 7. (]
As shown by (9), the transmitted signal at time ¢ is pro-
portional to the difference between two MMSE estimators of
1) . In particular, MMSE estimator yi” can be computed by

node 2 since it has access to z(()lt) and zé) This estimator

is a sufficient statistic of z( ) and z(?t) for XE ). Therefore,
this estimator contains all the mformation in the observations
of Xgl). On the other hand, ]E{Xgl) ’2&), fo.t} is the MMSE
estimator of Xgl) based on observations and received signals
available to node 1 up to time ¢. This estimator contains the
information of xﬁl) available to node 1. The difference between
the two estimators is scaled by a; to employ all the available
transmit power at node 2.

IDE is explained in the following. By subtracting
E{Xgl) |zélt) 7r0:t} from ygl), node 2 only transmits infor-
mation of Xgl) that has not been obtained by node 1. This
increases the power efficiency of node 2 and improves the
robustness of the transmitted signals against channel noise. To
see this, consider a reference encoding strategy that scales ygl)
directly without the subtraction. In particular, the encoding
function at time ¢ of the reference strategy is given by
i (zélt),zét),r()t) = a§ y§1)’ where oj is a scalar such that
B{ it (281, 252) o, t) } = P,. It can be verified that a; > .
This shows that under a same power constraint, IDE employs a
larger scaling factor compared to the reference one, and thus
more transmit power is used for transmitting the sufficient
statistic that contains the useful information.

The scaling factor o; can be computed by each node based
on a(Tl), b(Ti), 1-.7(1')’ Eg), ]—g’T, and k., in the system model for

= 1,2 and 0 < 7 < t. Therefore, node 2 does not need
to transmit information about oy to node 1. Expressions of
the conditional expectations in (9) and «; are presented in
Appendix A.

The next proposition shows that IDE is an OLES. It is also
an OES in the special case where '?,5(1) = 0, i.e, node 1
observes only noise.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 43, NO. 10, OCTOBER 2025

Proposition 1: For any T > 0, the IDE M%T is an OLES
for X(l) Furthermore, #0 . is an OES for X if 'y =0 at
auogt\Tandgé”:o. O

Proof: For an arbitrary encoding strategy pi.;, define
e¢(po:+) as the MMSE for inferring y§1 at node 1 based on
z&) and rg.; if po.¢ is employed, i.e.,

et(po) == V{yﬁl) — E{yil) | zélt)z lo: t}}

the MSE e;(po.¢) of the
satisfies

(10)

Since x ytl) I z(()lt),z(()zt)7 Fo:ts
distributed filter for inferring X,El

e(po:t) = ¢ (po:t) + V{Xgl) — yil)} . (11)

In (11), the first term in the sum is the MMSE for inferring
y,E” at node 1, whereas the second term in the sum is the
MSE of y§1) as an estimator of xﬁ”. The second term is
determined by the quality of sensor observations and not by
the encoding strategy. As a result, the encoding strategy design
for minimizing ey (o.7) is equivalent to that for minimizing
er(po.r). Appendix B shows that s, minimizes e7(uo.r)
among all linear encoding strategies. In addition, we can show
that i}~ minimizes er(uo.7) among all encoding strategies
if "yt(l) =0forall 0 <t < T and gél) = 0, thus completing
the proof. X

Remark 3: The IDE strategies (i}~ and il are consistent
for any non-negative T' and 7”. Consequently, Proposition 1
shows the following favorable property of IDE: if ul ., is an
OLES (resp. OES) of horizon T, then for any 0 < 77 < T,
strategy pi.o. is an OLES (resp. OES) for xgrl,). O

In Proposition 1, the condition 'y( ) = 0 for all 0 <

< T and gél) = 0 indicates that observations obtained by
node 1 contain only noise and are thus independent of states of
both node 1 and node 2. Under this condition, all the useful
information is contained in the observations of node 2, i.e.,
the node that performs encoding. Note that the condition in
Proposition 1 does not depend on Ft(z)

The problem investigated in thls paper under the condition

(1) =0 forall 0 <t <T and g, (1) _ = 0 is closely related to
that studied in [35] and [56] for continuous-time scenarios and
in [34] and [44] for discrete-time scenarios. Specifically, recall
from (11) that an encoding strategy for minimizing e (po.7)
is equivalent to that for minimizing er(ug.7). Using results
for Kalman-Bucy filtering [52], [57], [58], {yil)} 450 can be

(1) _
(1)

0 and g, * = O, then node 1 can only obtain information from
received signals and not sensor observations. Consequently,
the problem becomes designing an encoding strate%y at
node 2 so that the MSE at node 1 for inferring {y75 } 150
based only on node 1’s received signals is minimized. This
problem is referred to as transmission of a Gaussian process
through a channel in [56], and the results therein are used in
[35] for the design of encoding strategy and control policy for
linear-quadratic stochastic systems.! The difference between

shown to be a Gaussian Markov process. Moreover, if 4,

!Transmitted signals are viewed as measurements in [35], and an encoding
strategy is referred to as a measurement strategy therein.
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the problem investigated in this paper under the condition
51 = 0forall 0 < t < T as well as g{" = 0 and that studied
in [35] and [56] lies in the set of encoding strategies being
considered. Spemﬁcall recall that the transmitted signal S; in
this paper is a(z0 s zO t ,fo: t)-measurable whereas the trans-

mitted signal in [35] and [56] are a(yt ,ro;t)—measurable.
) ,(2)

By definition (8), U(ZOt’ZOt7r0 t) D) a(ygl),ro:t), which
indicates that a larger class of encoding strategies is considered
here. Therefore, the results in this paper under the condition

(1) =0forall 0 <t <7T and g(()l) = 0 are extensions of
the results in [35] and [56].

In general cases where 4, = 0 for all 0 < t < T or
gél) = 0 does not hold, IDE is not necessarily an OES. In fact,
an OES is typically nonlinear. Specifically, the observations
obtained by node 1 and node 2 are correlated in general
cases, indicating that observations obtained by the two nodes
contain common information about the unknown state Xgl).
To maximize the encoding efficiency, node 2 needs to remove
such common information in the transmitted signal and only
transmit knowledge of node 1’s unknown state not contained
in node 1’s observations. This in general requires employing
nonlinear encoding. An example where a nonlinear encoding
strategy outperforms linear ones is given in [59] for discrete-
time scenarios. Indeed, it has been noted that if observations of
different sensors are correlated, then linear encoding strategies
may not be optimal [44], [60].

The MSE of the centralized estimator can be used as a
benchmark on the performance of the distributed filter in
general cases where an OES is difficult to find. In par-
ticular, (11) shows that erp(po.r) = V{Xgpl) — y(Tl)} for
any encoding strategy po.r. As a result, the gap between
the MSE corresponding to IDE and an OES can be upper
bounded by e (uh,1) — V{x® —y$}, where V{x{" —y{"}
can be obtained using classical Kalman-Bucy filtering results
[53, Chapter 6].

The channel feedback affects the information pattern, i.e.,
what data are available, for the encoder at node 2. Since noise-
less feedback is considered in this paper, node 2 has access to
sensor observations and received signals obtained by node 1.
In IDE, node 2 uses these data to remove from the trans-
mitted signals the knowledge that has already been obtained
by node 1. If the feedback is noisy, then the information
pattern is changed, and the optimal encoding strategy would
be generally nonlinear even if %(1) =0forall0 <t < T and
g(()l) = 0. The effects of information pattern on the design of
encoding strategies for control and communication have been
investigated in the literature [61], [62], [63]. For example,
nonlinear control strategies have been shown to outperform
linear ones in Witsenhausen’s counterexample and in control
over lossy channels with user-datagram-like communication
protocols [61], [62].

IV. EXTENSIONS FOR RESULTS ON ENCODING DESIGN

This section discusses extensions of results in Section III
for scenarios with average transmit power constraints and for
multivariate unknown states.
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A. Case of Average Power Constraints

Section II defines an encoding strategy as a collection of
encoding functions under constraints (5) of the instantaneous
transmit power at each time. In some applications such as
event-triggered control [64], a node can choose to trans-
mit signals intermittently in order to reserve communication
resources for critical time instants. For such applications,
constraints on the transmit power averaged over the time
domain instead of on instantaneous power should be consid-
ered. Specifically, define an encoding strategy of horizon T’
under average power constraint P as a collection of encod-
ing functions juo.7 := {ps}epo,r) that satisfy the following
inequalities

t
%/_OE{MT(Z&.Z»Z(()QJ_,FO 7‘) }dT < P YVt € (O’T] . (12)

In other words, the average transmit power in the time window
[0,¢] does not exceed P for all t € (0,7]. We define
OLES under average power constraints as follows. Let L7 (P)
represent the set of all the linear encoding strategies of horizon
T that satisfy constraints (12). An OLES for X(T1 ) under average
power constraints is an encoding strategy that minimizes the
MSE for inferring xgpl ) among all strategies belonging to
L7 (P). In other words, an OLES for X( ) under average power
constraints is a solution to the optimization problem

minimize ez (po.7) - (13)

po:r €L (P)
An OES under average power constraints is defined similarly.
An OLES under average power constraints can be found via
a two-step procedure. To this end, write (13) equivalently as

(14a)

minimize minimize er (po:1)
Po.r NO:TGc(ﬁO:T)

1/t . _
subject to ;/ P.dr <P Vte(0,T]
0

(14b)

where ﬁ(]fjo:T) represents the set of linear encoding strategies
of horizon T' that satisfy power constraints ]50:T. The first
step for finding an OLES under average power constraints is
to solve the inner minimization problem of (14), i.e., finding
an OLES under instantaneous power constraints (5) specified
by ]30:T. Note that ]—g’o:T can be viewed as an allocation
scheme of the transmit power from time O to 7". The second
step is to solve the outer minimization problem of (14), i.e.,
finding the optimal power allocation scheme Fj., that leads
to the minimum MSE. The OLES under instantaneous power
constraints specified by Fj.,» is the OLES under average power
constraints. An OES under average power constraints can also
be found via a two-step procedure by replacing L£(Fp.r) in
(14a) with M(Py.T), i.e., the set of encoding strategies of
horizon T' that satisfy power constraints ]50:T. Note that a
similar two-step procedure has been used in the literature
for the joint design of transmission and control strategies
[34], [35]. Specifically, these works first design transmission
and control strategies under hard power constraints, and then
employ dynamic programming approaches for finding the
optimal power allocation scheme.
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OLES and OES under average power constraints can be
constructed using IDE strategies. To this end, let i), (Po.1)
represent IDE strategies given in Definition 3 under constraint
(5). Moreover, let P, represent the solution to the following
optimization problem

minimize  er (Mg:T(ﬁ&T)) (15a)
Po.r
subject to P dr < P Vvt e (0,7] . (15b)

The following corollary shows that IDE is an OLES or an
OES under average power constraints when certain conditions
are satisfied.

Corollary 1: For any T > 0, the strategy i (Pgr) is an
OLES for X(T) under average power constraints. Furthermore,
pb.r(Pgr) is an OES for X(T1 ) under average power constraints
if "},5(1) =0atall 0<t<T and g(l) =0. O

Proof: The IDE strategy MoT(PO 7) is a solution for the
first step according to Proposition 1, and thus the first claim
of Corollary 1 holds. The second claim of the corollary can
be proved in the same manner. X

B. Case of Multivariate Unknown States

Consider scenarios where the unknown states associated
with the two nodes are vectors and the signal transmitted
from node 2 to node 1 is also a vector. For 7 = 1,2, let
x,E’L) € R™ represent the state of node ¢ at time ¢, where n;
is the number of entries in x\”. The state process {x,ﬁi)} 150
follows the following SDE
(16)

dx\" = APxPdt + BO vl it € [0,00)

where A(i) and B() are deterministic matrices. The sensor

(1)

observation z; ’ at node 1 satisfies

dz{" = 1,Vx" dt + £{" dn{" (17)

where I} is a deterministic matrix representing the sensor gain
of node 1 at time t.

Communication from node 2 to node 1 is described as
follows. At time ¢, node 2 transmits a signal s; € R" to
node 1, where n. is the number of entries in s;. The signal s,
can be written as (4) with p.(-) replaced by a vector encoding
function g (-). The process {r;};>¢ of the signal received by
node 1 satisfies

dl’t = S¢ dt—|—Kt th (18)

where K is a diagonal matrix determining the level of channel
noise, and {w;};>¢ is a Brownian motion. The transmitted
signal satisfies the power constraint E{sTs,} < P, for all
te[0,T].

The aim of node 1 is to determine a distributed filter of
xgl) based on z((ft) and rg.;. The performance metric for such
an estimator is its MSE. The MMSE estimator 29) of xgl)
is given by the right hand side of (7), with X§1) replaced by
xtl). The MSE of this estimator is affected by the encoding
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strategy employed by node 2. For an encoding strategy pto.¢,
the MSE of x A(l) is defined as
x1}-

et(1o:t) = tT{V{ -

We present a lower bound on ep(po.r) over all linear
encoding strategies. To this end, let [M];.,, represent the n-
by-n submatrix of a general matrix M consisting of the first
n rows and columns of M. A lower bound on er(pg.7) is
presented in the following proposition.

19)

Proposition 2: For any linear encoding strategy fo.r, a
lower bound on ep(po.7) is given as follows

{[E5],.,
where EY is defined in (36), and function &; solves the initial
value problem (69) presented in Appendix C. ]

Proof: See Appendix C. X

1/TL1

er(por) = tr } + ni1€f (20)

Remark 4: Characterizing the MSE of optimal linear
encoding strategies for multivariate unknown states is more
challenging than for scalar states as the one-to-one mapping
between Shannon information and MSE for scalar states
does not exist. Specifically, if a linear encoding strategy is
employed, then

det(V{xi? ~ 5V })
= det (V{xgl) }) exp{—QI(xgl) 2\ ro, t)} :

. 1 . .
For scenarios where x§> is a scalar, the determinant of

V{X(l) )?,El)} equals the trace of this matrix, which is the
MSE e;(p10.¢). This shows a one-to-one mapping between the
MSE and the mutual information term in (21), and thus the
MSE of the optimal linear encoding strategies can be deter-
mined by maximizing the mutual information. By contrast, for
scenarios where xﬁl) is a vector, the determinant and the trace
of V{x(l) igl)} are different in general, and thus the one-
to-one mapping between the MSE and the mutual information
term does not exist. Therefore, the MSE of the optimal linear
encoding strategies for multivariate states is more difficult to
characterize, and a lower bound on such MSE is derived in
this subsection. O
Next, we present extension of IDE for multivariate unknown
states. In particular, the encoding function gl at time ¢ is

ui (28250 v00) = BT (v~ Bfxi 20 o }) - 22)

where @, € R(m1+12)xne jg ap encoding matrix; x; and y, are
defined as
1\ T o111
xoi=[ ()" (x*)7]

yoim |, 22)

Equation (24) indicates that y, can be viewed as the centralized
MMSE estimator of x; based on sensor observations of both
nodes. Matrix @, is chosen to satisfy that the transmit power at
time ¢ equals P,. This condition is written as tr{ P} QP } =
Pt, where Q) is defined in (36). Note that (9) is a special case
of (22) with @, = [o 0]T.

2n

(23)

(24)
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The MSE of the distributed filter is given by e;(u}.,) =
tr{ [E'tc —|—Qt] n }, where EY is defined in (36). In particular,
the expression of Q) is given by (41) with ¢, and «; replaced
by @, and K., respectively, whereas the expression of Ef
is given by (37). Note that for scenarios of multivariate
unknown states, definition of B; in (38) is changed to B; =
diag{B{", B}

Finally, the connection between distributed filtering in
continuous-time scenarios and that in discrete-time scenarios is
discussed. A discrete-time counterpart of the system described
by (1)—(6) can be obtained via time discretization. Specifically,
let 7 > 0 represent a sampling interval, then the mth sample
of the state, observation, and received signal in continuous-
time scenarios are ngl)T (z=1,2), 27(73)7 and Fonrs respectively.
These quantities are approximated by iﬁj}, 25,",?, and T,,,
respectively, using the Euler-Maruyama method [65]. These
quantities satisfy the following difference equations

O = (140 )50 4+ 7 (09) D (25)

] ) o 1 ).
(@0~ 20) = 450 + S 3w 26

1
=2 ﬁg) (27)

~mT

(B2~ 22) = T )+

S

1

o o (1) o(2) v o
;(rm—i-l - rm) == NmT (z(()n)nvzg):r)n, rO:m) + FKmT Wm
(28)
where \75,?, ﬁfﬁ), ﬁg), and W,, are independent zero-mean

Gaussian random vectors and variables. Specifically, ﬁﬁi’

and ﬁﬁi) have identity covariance matrices, whereas W,, has
unit variance. Vector i((f:zn represents the concatenation of
ig),igl),...,isfl), and Fo., is defined similarly. Equations
(25)-(28) specify a discrete-time version of the distributed
filtering problem, where the left-hand sides of these equations
represent the state of node ¢ at time step m 1, the observation
of sensor 1 at time step m, the observation of sensor 2
at time step m, and the received message at time step m,
respectively. Such discrete-time distributed filtering problem
has been investigated in [59].

V. CONNECTION BETWEEN SHANNON INFORMATION AND
FISHER INFORMATION

Shannon information and Fisher information are both
related to MSE. The Shannon information quantities related
to filtering problems include information supply, information
storage, and information dissipation, introduced in [15] and
[16]. The information-theoretical approach presented in those
works is adopted in this paper to investigate the relationship
between Shannon information and Fisher information for the
distributed filtering problem described in Section IV-B. While
results in this section are not used directly for deriving encod-
ing strategies of Sections III and IV, these results demonstrate
the difference in the information structure between distributed
filtering and centralized filtering. In terms of notation, we
denote Shannon’s mutual information between general random
quantities x and y by I(x;y), and denote the Fisher informa-
tion matrix (FIM) for x from y by J(x;y). Definitions of these
quantities can be found in [15] and [16].
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Consider the scenario where the following class of linear
encoding strategies is employed

1 2

223 (zo;t 9 zO;t ) rO:t) = dstTyt + g (zg)lt)u rO:t) (29)

where @; is a deterministic matrix, and g, is an affine function.
Consequently, the signal transmitted at time ¢ is a linear
function of the centralized MMSE estimator y, plus a function
of the local observations and received signals obtained by
node 1. Note that (29) describes a class of encoding strategies
since ¥, and g; are design parameters and can be set to
different values. Moreover, the class of encoding strategies
specified by (22) is contained in the class of strategies (29)
with g, (z((ft)7 ro) = —PF E{x| 2&)7 Foit }-

Information supply, information storage, and information
dissipation for distributed filtering are defined as follows. The
information supply S(¢) to the distributed filter up to time ¢
is defined as the mutual information between the path of node
I’s state xélf) from time O to time ¢ and the observations zélf)
as well as received signals rg.; obtained by node 1, i.e.,

S(t) := I(x&); zé%t), l’o;t) )

The information supply S(t) consists of two parts: one part
is useful only for inferring the unknown state in the past, i.e.,
x(Tl) with 7 < t, and can be discarded by the filter; the other
part is useful for inferring the current unknown state Xgl) and
should be stored by the filter. In particular, the information
storage C(t) of the distributed filter at time ¢ is defined as the

mutual information between node 1’s state xil) at time ¢ and

1 .
zé:t) as well as roy, i.e.,

C(t) = I(x;"325) vour) -

The difference S(¢) — C(t) between information supply and
information storage is referred to as information dissipation
up to time ¢ and its derivative £ (S(t) — C(t)) is called the
dissipation rate of mutual information.

Next, a proposition on mutual information is presented,
and a connection between information dissipation rate and
Fisher information for distributed filtering is derived. To this
end, recall that the FIM J(x;y) for x from y is defined as

J(x;y) = E{](X; y)} Here j: X x Y — R"*™ is defined as

](:cy) — iln fx\y(w‘y) 0 In fx|y(w‘y)
T Oz fx(x) ) 0zt fx(x)
where f, and f,, represent the probability distribution

function (PDF) of x and the conditional PDF of x given
y, respectively. Consider processes {0;}:>0, {®;}:>0, and

{€,}+t>0 as given by

det = Atet dt + Bt th (308.)
de, = (D;0; + E,) dt + F; dv, + K; dw, (30b)
g, = (Gtet + Hip, + g (E():t)) dt + Ly dey (30¢)

where A;, B;, D;, E;, F;, K;, Gy, H;, and L; are
deterministic matrices such that L;L} is invertible for any
t > 0; g, is a linear function; {v;};>¢ and {@;};>0 are
independent Brownian motions. In addition, 0y, ¢,, and &,
are Gaussian and are independent of {v;};>¢ as well as
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{®}i>0. The following proposition presents an inequality
between dissipation rate of mutual information and a function
of FIM.

Proposition 3: Consider processes {0;}:>0, {®;}:>0. and
{&.:}1>0 given by (30). It holds that

1
dt( (90 it Fso t) (et; E.O:t)) > 5 tr{BtB;FJ(et% Eo:t)}
(31
for all t € (0,T], where equality is achieved if H; =0. O

Proof: See Appendix D. X

Next, an inequality between the information dissipation rate
and Fisher information in distributed filtering is presented.

Proposition 4: If an encoding strategy that belongs to the
class of strategies given by (29) is employed by node 2, then
the information dissipation rate for distributed filtering satisfies

d 1
Z(s®) =) > su{BY(BM) T (xV:zf) o) |
(32)
d
Proof: Applying Proposition 3 with 0, = xgl), 9, =
@Oyt T and E, = [@ED) T T, we obtain
[ (x; ¢ t ¢ ¢

(32).

Remark 5: Proposition 4 can be extended to cases where
observations of sensor 1 depend on states of both nodes. [
Fundamental equalities connecting Shannon information
and Fisher information have been established for centralized
filtering problems [15], [16]. In particular, it was shown that
d
dt

where x; is defined in (23), z; := [(zgl))T
B, := diag{ B"
for the transmission of {xf}) }t>0 given by (1) via a Gaussian
channel. There, the received signal process {r;};>o satisfies

1
(1(x0:t5 20:¢) — I(x¢3204)) = itr{BtB;rJ(xt;ZO:t)}

(ZEQ))T]T, and

2 } A similar equality is derived in [56]

dry = e (x{" our) dt + 5y dw, (33)

where i (-) is the encoding function at time ¢, quantity x; is
a deterministic scalar, and w; represents the additive Gaussian
noise in the channel. The equality between Shannon informa-
tion and Fisher information in [56] is derived using the fact
that the drift coefficients a( )Xg ) and m (Xgl), r0:t) at time ¢ for
dxgl) and dr; (see (1) and (33)) are U(X&t), rOZt)-measurable.
However, this is not the case for the distributed filtering
problem studied in this paper. In particular, the drift coefficient
ut(z(()t)gét),ro t) at time t for dr; (see (4) and (18)) is
not o (x{\), 25}, ¥o.t)-measurable. As a result, an inequality,
instead of an equality, between Shannon information and
Fisher information is derived in this paper.

This section considers linear encoding strategies, which
make {[(xgl))T (zgl))T r;F]T}t>O a Gaussian process.
Note that calculation of Shannon information and Fisher
information is not limited to Gaussian processes. For example,
mutual information between non-Gaussian processes is calcu-
lated in [13] and [16]. However, the calculation of mutual
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information can be simplified significantly for Gaussian pro-
cesses.

VI. CASE STUDIES

This section presents numerical results for scalar unknown
states in the setup described in Section II and for multivariate
unknown states in the setup described in Section IV-A. Time-
invariant systems are considered such that ag R and b( RET (D),

5D 1 and 27 in (2), P, in (5), k; in (6), A" and B{”
in (16), 1"( ) in (17), and K, in (18) do not vary W1th time t.
Subscripts ¢ for these quantities are thus omitted.

A. Results for Scalar Unknown States

We evaluate the accuracy of distributed filtering for scenar-
ios where vgl) contains only one entry and thus b() becomes
a scalar for 7 = 1, 2. Quantities in (1) and (2) are set to

a® =0.05, b =2, a® =-0.05

b? =1, M =, =0 9
2_|01 =@ _ |40

r [—1 1] = {0 1

with V{x{"} = V{x)} = 1.2. The value of P/x2, which
characterizes the signal-noise-ratio (SNR), is set to 8.4dB
and —8.6dB, and the capacities of the Gaussian channel
corresponding to these SNRs are 5 bits/s (bps) and 0.1bps,
respectively [56]. Parameters in (3) are given by g(()l) = 0,
G(z)—Oll"(z) andV{§ )}— = fori=1,2.

The following class of encoding strategies is considered

se=afp V1-p?] (yt - E{Xt |25, ro:t}>

where oy > 0 and p € [0,1] are parameters chosen to
ensure that E{s2} = P. This class of encoding strategy
can be interpreted as follows. According to (24), vector
y: — E{x; | zo%t), fo.r} can be viewed as the knowledge of x
that is available to node 2 but not to node 1. Node 2 employs
the available transmit power to send a linear combination of
such a vector to node 1. For the case where p = 1, (34) is the
IDE shown in (9), and for cases where p < 1, (34) represents
reference methods. According to Proposition 1, the strategy
given in (34) with p = 1 is an OES for x\"

In addition to the class of encoding strategies in (34), we
also consider the scenario where there is no communication
link from node 2 to node 1, which is equivalent to setting
s; = 0. Another encoding strategy we consider as a reference
method is that node 2 does not use feedback and uses only
its own observations for encoding. For this strategy, we set
S = agE{Xgl) |zgft)}, where af > 0 is chosen to satisfy
E{s?} = P. Note that feedback information zélf) and ro. is
not used for encoding at time ¢.

The normalized MSE of the distributed filter )A(El) is used
as the performance metric in this subsection. This metric is
defined as IE{( x — El)) }/E{( M _ il)) } namely the
ratio between the MSE of x§” and that of the centralized
MMSE estimator y§” given in (8). Note that the normalized
MSE of a distributed filter is always greater than or equal
to one. This is because a centralized estimator uses sensor

(34)
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Fig. 2. Normalized MSE of the distributed filter in the log-scale as a function
of time if node 2 employs the class of encoding strategy in (34) with p =1
(proposed strategy) and p = 0. The normalized MSE for the scenario where
there is no communication from node 2 to node 1 and the normalized MSE
for the strategy that does not use feedback are also shown.

observations of both nodes and thus achieves smaller error
than a distributed filter irrespective of the employed encoding
strategy.

Figure 2 shows the normalized MSE of the distributed filter
)?,El) as a function of time ¢ when different encoding strategies
are employed. Note that if there is no communication, then the
normalized MSE is not affected by the channel capacity, and
thus only one curve is plotted for this strategy. One observation
to make regarding Fig. 2 is that the normalized MSE of
the distributed filter increases with time and is significantly
larger than one for all the reference methods, indicating that
the accuracy of the distributed filter degrades remarkably
compared to the centralized MMSE estimator. By contrast,
the normalized MSE of the distributed filter approaches one
when IDE (i.e., p = 1) is employed, indicating that the
performance gap between the distributed filter and the central-
ized MMSE estimator is marginal. This supports the claim of
Proposition 1 that IDE is an OES in this setting.

Another observation to make regarding Fig. 2 is that the
normalized MSEs of both the proposed strategy and reference
methods are larger when the channel capacity is 0.1bps
compared to the scenario where the channel capacity is 5 bps,
as the received signals suffer more from channel noise. In
particular, the normalized MSE of the IDE keeps increasing
with time when the channel capacity is 0.1bps. Since IDE
is an OES, the MSE of the distributed filter is unbounded as
time approaches infinity irrespective of the encoding strategy
employed by node 2. This is affirmed in [66], where a
necessary and sufficient condition under which the MSE of
the distributed filter is bounded over time is derived.

Next, we evaluate the power efficiency of IDE compared
to reference methods specified by (34) with different values
of p. In particular, we consider the stationary performance of
the distributed filter, namely the error of the filter at a time
sufficiently large such that the error covariance has converged,
as a function of the SNRs P /K% in the communication channel
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Normalized MSE

SNR [dB]

Fig. 3. Normalized MSEs of the distributed filter in the log-scale as a function
of the SNR in the communication channel for different values of p. The IDE
strategy corresponds to p = 1.

from node 2 to node 1. Figure 3 shows the normalized MSE
of the distributed filter for different values of p. First, the
normalized MSE decreases with p and achieves the minimum
value at p = 1, i.e., when IDE is used, at all SNRs. In
particular, to achieve a normalized MSE of 2 as indicated
by the horizontal dashed line in Fig. 3, the transmit power
required for IDE is 6.9dB and 2.9dB, respectively, smaller
than that required for the reference strategy with p = 0.8 and
p = 0.9. Second, the normalized MSEs decrease with SNR
for all the encoding strategies as more information can be
transmitted over the channel.

B. Results for Multivariate Unknown States

We consider the use case of 2-dimensional (2D) tracking,
which is an important application in industrial CPSs. The
state xi” of each node 7 = 1,2 has four entries, where the
first two entries represent the 2D position of node ¢, and
the last two entries represent the velocity of this node. The
evolution of each node’s state follows the continuous white
noise acceleration model [67], and parameters in (16)—(17)
are given by

02x2 I

AW = , BY=1, TIY=I[L0y:]
0252 O2x2

e O4xq Iy =0 —¢1, = = (.21
—Iy I|’ 7

(35)

where I, represents the n-by-n identity matrix. In (35), &
is a parameter determining the noise level of sensor 1. The
observation model specified by (35) is interpreted as follows.
Node 1 can observe its 2D position. Node 2 can observe its
own state, as well as the difference between the states of
the two nodes. In terms of communication, strategy (22) is
employed with & = [I, 04X4}T, and matrix K in (18) is
set to K = 1.

Figure 4 shows the MSE of the distributed filter and the
lower bound (20) as functions of sensor noise level & for
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Fig. 4. MSEs of the distributed filter in the log-scale as a function of noise
level of sensor 1 for different SNRs in the communication channel. Solid lines
represent MSEs for the encoding strategy (22), whereas dashed lines represent
lower bounds (20) on MSEs for all linear encoding strategies.

different SNRs in the communication channel. First, the MSEs
of the distributed filter and their lower bounds increase with &
as sensor 1 suffers more from noise. Such increase becomes
less significant at higher SNR in the channel, since the
distributed filter can employ the received communication data
for inferring unknown state xil) and thus relies less on the
observations of sensor 1. Second, there is a gap between the
MSE:s of the distributed filter and their lower bounds, and such
gap is smaller at higher SNR. The gap is due to the effect of
the bounding techniques for deriving the lower bound and also
due to the non-optimality of the evaluated encoding strategy.

VII. CONCLUSION

This paper established theories and designed strategies for
continuous-time distributed filtering. In particular, the paper
investigated a two-node system in a network where one node
transmits encoded signals to the other node via a Gaussian
feedback channel. We designed an encoding strategy named
IDE and proved that it is an optimal linear encoding strategy.
IDE is also optimal among all encoding strategies in the
special case where the node that receives encoded signals
can only observe noise. Moreover, an inequality between the
information dissipation rate and Fisher information in dis-
tributed filtering was established. This extends the fundamental
relationship between Shannon information and Fisher infor-
mation for Kalman-Bucy filtering to distributed settings. The
findings in this paper serve as a building block for extension
to general networks and provides insights for the co-design
of communication and computing algorithms in applications
such as industrial cyber-physical systems.

APPENDIX A
TRANSMITTED SIGNALS FOR IDE

For the simplicity of presentation, define
X¢ 1= ]E{xt | z((ft), rO:t} , E; = V{xt - yt} (36a)
B = V{x -%}, Qi=V{y,~%} (6b)
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where x; and y, are defined in (23) and (24), respectively.
Note that EY is the error covariance matrix of the centralized
estimator y,. Using results for optimal linear filtering [56,
Chapter 10], we obtain

dE; -
b= AB; + E{A] + B.B] - E{I] (2,5]) ' LE;
(37

where

A, = diag{agl)7 a§2)} ,

I, = {(Iﬂt(l))T (Ft(z))T}T’

Here,

V=" ol. (39)

The term ]E{Xgl) | z((ﬁg ,To: } in (9) is the first entry of X,. If
IDE is employed, then x; can be computed as
N T/ —(1)/=(1)\T\ ! .
A%, = [At - E,(rY) (:51)(:9)) ) Ft“)}xt dt
T/ (1) f (1T _
+ E; (I’t(l)) (:.t(l) (.:t(l)) ) dzil) + Quepyky 2 dry
(40)

with Xg = IE{XO | z(()l)}. Here, we define ¢; := [a; 0]T. The

expression of oy is o = (lst/[Qt]l,l)l/Q. Moreover, Q, and
FE,; satisfy

d _
% — AQ, + QAT + BT (5,57) ' [LES
I} INNT [ —=(1 —_—(1)\T -1
- E Q)T (5 (=)")
x [V(ES + Q1) — Qube v 27 Q0 (A1)
E =E+Q,. (42)

Note that F;, Qt? and o are determined by parameters in the
system model a b9 D =59 P and k, fori = 1,2
and 0 < 7 < t. Consequently, E;, Q;, and «; are not affected

by the instantiations of XO?t’ xo?t, 282 , zo?t), and ro..

APPENDIX B
PROOF OF PROPOSITION 1

We first present a few lemmas to be used in the proof. The
first lemma provides a lower bound on MSEs of estimators
for Gaussian random variables.

Lemma 1: Let 6 be a Gaussian random variable and § be a
random vector. For an arbitrary estimator 8 of 8 based on &,
i.e., 0 is o(&)-measurable, its MSE can be lower bounded as

E{(6-8)"} > v{0} exp{-21(8:3)}.

Equality in (43) is achieved if 6 and § are jointly Gaussian

(43)

and 0 is the MMSE estimator of 6. O
Proof: Lemma 1 can be proved using similar arguments as
those used for proving Lemma 11.3.1 of [44]. X

The next lemma shows conditional independence relations
for the distributed learning problem investigated by this paper.
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Lemma 2: The following conditional independence relations
hold for all ¢ > 0

XtV 1zf], 262 10| v (44a)

XD xg2> Wro | 241, 22) (44b)

where ygl) is defined in (8). J
Proof: See Appendix A.1 of [68]. X

Next, Proposition 1 is proved.

Proof: First, it is proved that ui , is an OLES for Xgpl ). As
discussed in Section III-B, we only need to show that jl. .
minimizes e (uo.) among all linear encoding strategies of
horizon 7. To this end, consider an arbitrary linear encoding
strategy 0.7 of horizon T'. We prove that pl) - is an OLES by
deriving a lower bound &(T) on er(po.r) and showing that
pb. achieves this bound, i.e., er(ul.r) = &(T).

We derive &(T) using the relationship between MSE and
mutual information shown in Lemma 1. To this end, choose
arbitrary numbers ¢ and 7 such that 0 < ¢ < 7 < 7T, and define
&:(7) as the MMSE for inferring y(Tl) based on 282 and rq.;
if linear encoding strategy i.¢ is employed by node 2, i.e.,

E(T) = V{yg) - E{y(Tl) ’ zég, rO:t}} )

Choose an arbitrary s such that ¢ < s < T. Applying
Lemma 1, we obtain

21 (5) :V{ygl)}exp{ 2I(y(1) Zoser t)}
es(po:s) = V{ygl)} exp{ 2I(y(1) z(() 5)7 ro:s)}.

Next, an inequality between the two mutual information terms
in (46) and (47) is derived. Applying the chain rule of mutual
information gives

(45)

(46)
(47)

1y 28, o) = T2 ro) + Ty s [ 2610100 -
(48)
Define t, :=r, —r, for t <7 < T, then
I(yMirgs \zOS,rOt) I(yM;tes \zOS,rOt)
< I(y(l) Z(() 27 Fo:t; rt's)
<I(21), 20 roites)  (49)

where the last inequality is  because y&” is
(z((Jl; ,2?))-measurable. ~ Note  that  f, satisfies
dr, = s;dr + Kk.dW,, where W, := W, — W;. Recall

that s, is a(zéll,

1 . .
(zé 3, z(() 5 To:t, fy. T) -measurable. Moreover, the relationship

zéls), Zg.o To:t L w,., holds. Using similar arguments as in [56,

Chapter 16.3], we obtain

zo:T,ro:T)-measurable, and is thus also

(Z((]127 ZO 97 rO B2) rt s < / CT dT (50)
t
where C, := 157 /(2k2). Combining (46)—(50) gives
es(po:s) > (s )eXP{ / C-,—dT}. (51)
t

3421
Define a function (A, t) as
t+A
(A ) = E(t+ A) exp{—z/ C, dT}
t
for t € [0,T], A€ [0,T —t. (52)
Using this definition, we obtain
Y(0,1) = &(t) = e¢(po:t) (53)

where the second equality is obtained using (10) and (45).
Subtracting both sides of (51) by ¥(0,¢) gives

ES(MO:S) - Et(/-//O:t) 2 ¢(3 - t7t) - '(/J(O?t)
Therefore,
d > i 1 t,t 0,t
%f‘:t(NO:t) =z si%l* 5 t(d)(s ) ) - 1/1( 3 ))
0 d .
= 5aVA 0], = GEm| _ ~ 2o

(54)

where lim,_,;+ is the one-sided limit as s approaches
t from above. The second equality in (54) is obtained
using the formula for derivatives of composite functions
and (53).

Next, 7= d z,(7) in (54) is derived using the notion of inno-
vation processes. Define innovation process {'nT } >0 with

respect to {zT }oopfori=1,2as

d.ﬁ(i) — dz(i) _ p(i)y dr, "I(()) _ z(()l)
where I’t( ) is defined in (39) and y, is defined in (24). In

addition, define a process {1]7 }s0 88

, , , -1/2
) = (80(=)) T a0, A =2 6s)
The process {'n(Ti)} 750 is named a scaled innovation process.
Processes {11(7 —"lol)}7>0 and {'q (2)} ., are indepen-
dent Brownian motions [69], and o(n(()lt) ) 'qé2t) ) = a(zélt) , zégt) )
[52]. Using Kalman-Bucy filtering results and (55), dy, can
be written as
2 T\ 12
dy, = Ay, dr+ B3 (00)" (50 (20)7) " and
i=1
(56)

where A, := diag{a(Tl),aT )} Combining (55) and (56), we

@) 5

can write yT and zZ

dy® = aMy® g7 + (hQ))T dqD + (K" d®  (57a)

a2 = 4Dy W ar + (20(5M)7) P (s
where vectors h'" and h'? are defined as

= (20(=0)T) A0E], 68w

h® = (22(=22)7) e [E<]} (58b)
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with [E¢]

, . Tepresenting the first row of EZ. Using (57), we
can derive

d

—&(7) = ol (7))

where the function v(7, ) is defined as

o(ra) =~ [ (40) T + (0T (20 (50)7)

% (—(1) (2M) T)
<[+ )" (50 =) T

2
+2a 2+ 37 (RD) RO,

(59)

1/2}

(60)
i=1
Substituting (59) into (54) and using (53) gives
d
prad (10:¢) = v(t, ee(po:e)) — 2Ce ¢ (po:t) (61)
and g9 (o) = V{yél) |z(()1)} at time 0. Consider function &(t)
that solves the following initial value problem
aé(t) =o(t,&(t)) —2C &(t) (62a)
20) = V{ygD | zg”} . (62b)

Substitution of (60) into (62a) shows that (62a) is a Riccati
equation, and (62) has a unique solution [69]. Comparing (61)
with (62) and applying Theorem 4.1 of [70] gives e (po.r) =
g(T). This shows that £(7) is a lower bound on ez (uo.1)
for arbitrary linear encoding strategy po.7, as claimed in the
beginning of the proof. On the other hand, if the IDE strategy
pd - is employed, then & (,ui&t) can be shown to solve (62).
Therefore,
€T (NBT) = f(T) < ET(H’O:T) .

This shows that pio:T minimizes e (uo.7) among all linear
encoding strategies of horizon T', thus proving that jig., is an
OLES for x\).

Next, it is shown that i 5 is an OES for x( ) if '3/,5(1) =0
for 0 <t < T and g( ) = 0. Recall that an OES minimizes
5T(/~LO:T) among all encoding strategies of horizon T, i.e.,
designing an OES is equivalent to finding an encoding strategy
that minimizes the MSE for inferring y(T1 ) at node 1. The
expression of ygl) can be obtained by substituting h(Tl) in (57a)
with 0, since fyg) = 0 in (58). As a result,

dy™M = oWy dr + (R) " dn®. (63)

If %(1) =0 forall 0 <t<T and gél) = 0, then zé)T are
a(nél%, C(l))—measurable, i.e., observations of sensor 1 consist
of only noise. Consequently, these observations are not useful
for inferring x§1> and can be omitted in both encoding and
inference. Specifically, the MSE er(uo.7) becomes

=v{y —E{y{ [ror } |

Combining (63) and (64), we observe that an OES should
minimize the MSE for inferring the Gaussian process Y(()%)T
using signals ro.z received via the Gaussian channel. This
problem has been studied in [56] and it was shown that the

er(po:T) (64)
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OES is the encoding strategy presented in Definition 3, and
thus the proof is complete. Note that the proof uses an equality
between mutual information and Fisher information involving

processes {yf})}% and {r:}s>o0. X

APPENDIX C
PROOF OF PROPOSITION 2

Proof: Let pg.r represent an arbitrary linear encoding
strategy. Define Ey, E;, and Q; as in (36). It can be verified
that (42) holds. Combining this with (19) and (36), we obtain

er(por) = e{(Erlin, } + tr{[@rlron, }.

We next derive a lower bound on the last term of (65).
For any 0 < t < s < T, define

€¢(s) := det (V{ygl)h&, r0:t})7 et(phot) == det([Qt]Lm).

In particular, &;(s) and e;(po¢) reduce to (46) and (47),
respectively, for the special case where xt1 contains only one
entry. Using similar arguments as shown in (48)—(53), we can
prove that (54) holds, where the capacity C; is given by

9 [K]nc,nc} :

(65)

C *Pt/mln{ 11, K]2727...

in (54). To this end, define

. d ~
Next, we derive E&(T)’T:t

E~t(s) = V{ gl) ‘Z((J?s)er:t} .

Note that &,(s) = det(E;(s)). Using similar arguments as
shown in (55)-(60), we can derive the expression of %Et(s).
Combining such an expression with the equality d%ét(s) =

det (Et )tr{Et 1% Et(s)}, we obtain
d
Eaﬁ(T) T=t

- tr{QA,E” +E ) (HP) HP

—aryT(=0(EM)T) RO B,
- BOE (20 (E)) TR )
(66)

where Ht(z) is defined by replacing 7 with ¢ in (58b), and by
replacing || .. there with the matrix consisting of the top
ny rows of EY.

To proceed, we derive an inequality for the right-hand side
of (66). First, note that

Ei(t) - v{y{" |2} < 0

where M < 0 indicates that M is negative semidefinite.
Second, using inequality between arithmetic and geometric
means of eigenvalues for a square matrix, we obtain

(67)

- ~ 1/n1
tr{Et(t)_l} > nq det (Et(t)_l) = nlet(u():t)_l/”l.
Therefore,

tr{Et(t)_ (HY® H<2>} > A myes(pos) /™ (68)
e

. Restrictions apply.
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d 1 1 _ _
gf(eﬁ €o.0) +§tr{BtB;FJ(et§ €0.0) } = 5“{ (L.L}) 1[Gt Ht](Mt_dlag{Oa V{(Pt | 0, EO:t}}) e Ht]T} L))
d 1 - .
Z1(804:80,) =5t {(LeLT) G Hi)(Mi—ding{0,V{w, [00.. 80 } } )G HT}. (9)

where ) is the smallest eigenvalue of (Ht(Z))THt(Z), ie.,

A= min{)\ eR:Jx#0 s.t. (HEZ))THt(z)ac = )\x}.

Substituting (67) and (68) into (66), using (54) and applying
Theorem 4.1 of [70, Chapter 3], we obtain that e;(po.t) > &,
where €, solves the following initial value problem

%ut _¢, tr{QAEl) _ (ji,t(l))T(Et(l) (Etu))T)*lfta)
< (2B, +v{nV |20}) }
FAme ™ — 20z, (69a)
2o = det (V{yo EX }) . (69b)
Therefore, tr{[Q7]im,} > nier(por)/™ > nlélT/m'

By substituting this into (65), the desired result (20) is
obtained. X

APPENDIX D
PROOF OF PROPOSITION 3

Proof: Define matrix M; := V{ A (p;r]T |§0:t}- Note

that M, can be partitioned as
Me MBq)
[ 20,

(M*)" MY

where MY is a square matrix such that the number of its rows
equals the number of entries in 0;. Since 0;, @,, and &, are

jointly Gaussian, it holds that

V{w, |00, 8, | = MF — (M) (MF) "M (70)
1. det(V{0

1(84;8,,) = 5 In Zei({l\/lt;)}) (71)

J(8,:8,,) = (M®) ' —v{e,} . (72)

According to results for optimal filtering [56, Chapter 12],

d
ZM? = AM] + (M) A} + BB}
— (MPGT + M®H]) (L, LT)™"

x (MOGT + M@ H])" (73)

On the one hand, combining (70)—(73) gives as in (74),
shown at the top of the page. On the other hand, applying
Girsanov’s theorem [71], we obtain as in (75), shown at the
top of the page. Note that V{e, | 8;, &y, } — V{e, | 00.¢, &y, }
is positive semidefinite. Combining this with (74) and (75)
gives the desired inequality (31). Finally, if H; = 0, then

(G, H)] diag{O,V{cpt e, E,Ozt}} G, H,
~ [G: Hy] ding{0,V{e, |80s. &, } }[G: Hi] = 0.

]T

Combining this relationship with (74) and (75), we conclude
that equality in (31) holds if H; = 0. X
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